검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2025.03 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        This study focuses on analyzing the impact range of toxicity, overpressure and radiant heat (pool fire and boiling liquid expanding vapor explosion, BLEVE) resulting from a propylene oxide leakage accident and proposes mitigation strategies to minimize damage. A risk assessment was conducted by designing accident scenarios based on variables such as substance quantity and wind speed. The results indicated that toxicity and BLEVE were the primary risk factors, and the risk level increased as the substance quantity increased and wind speed decreased. For future mitigation strategies, it is suggested that a quantitative analysis of vapor dispersion rates and dilution and effects under various environmental conditions be conducted, along with preliminary research on optimizing absorbents and catalytic materials.
        4,000원
        2.
        2025.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구에서는 전지구 해양 예측 모델 결과를 동아시아 지역 해양 모델인 ROMS의 초기 및 경계 조건에 적용 한 역학적 규모 축소 모의 실험을 수행하였다. 우선 ROMS 모델의 성능을 AMOR3D, EN4, 정선 관측 자료, 인공위성 영상 및 기존에 발표된 MOHID 모델과 비교하여 검증하였다. 전반적으로 봄과 가을에는 관측 자료와 잘 일치하였으나, 해양 성층화가 강화되는 여름에는 모델 성능이 저하되는 것을 확인하였다. 또한, 동해와 남해보다 황해에서 더 우수한 성능을 보였으며, MOHID 모델보다 아표층 모의 성능이 개선되었다. RCP 4.5 시나리오를 적용하여 2015년부터 2030 년까지 예측한 CM2.1 전지구 해양 모델의 결과를 사용한 역학적 규모 축소 모의를 수행한 결과, 한반도 남서 연안의 저수온 영역, 황해난류의 경로 및 쿠로시오 해류의 사행 등 실제 해양의 다양한 현상이 잘 재현되었다. 또한, 지역 모델은 저해상도 전구 모델보다 평균 수온의 경년 변동 폭이 커지는 것을 확인하였다. 본 연구를 통해 ROMS를 이용한 역학적 규모 축소 결과의 신뢰성이 확인되었으나, 향후 동해 및 남해와 같은 특정 지역의 ROMS 모델의 모의 성능 개 선과 2030년 이후의 장기 시뮬레이션 연구가 추가로 필요할 것으로 보인다.
        4,800원
        3.
        2024.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to compare and analyze the impact range of explosion damage due to gas leaks at LPG filling stations, focusing on propane and butane, which are components of vehicle LPG. The scenarios were designed based on the explosion incident at an LPG filling station in Gangwon-do, where an actual gas leak accident occurred, resulting in Scenario I and Scenario II. The ALOHA program, developed by the U.S. National Oceanic and Atmospheric Administration (NOAA), was used as the tool to analyze the impact range of the explosion damage for both substances. The results of the study indicated that, under identical conditions, propane had a wider impact range of damage than butane. This is presumed to be due to the greater explosion energy of propane, attributable to its physicochemical properties. Therefore, when preparing for LPG leak accidents, measures for propane need to be prioritized. As safety measures for propane, two suggestions were made to minimize human casualties. First, from a preventive perspective, it is suggested to educate workers about propane. Second, from the perspective of response measures and damage minimization, it is suggested to thoroughly prepare emergency evacuation and rescue plans, evacuation routes, designated shelters, and emergency response teams. This study compares and analyzes the impact range of radiative heat damage based on LPG components. However, hazardous accidents are critically influenced by the type of leaking substance, the form of the leak, and meteorological factors affecting the diffusion pattern of the substance. Therefore, for future research, it is proposed to model various leakage scenarios for the same substance to conduct a comprehensive risk assessment.
        4,000원
        4.
        2023.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to compare and analyze the flame retardant performance of Japanese cypress(Chamaecyparis obtusa) plywood, commonly used in indoor decoration, furniture, and tableware, by treating it with three different fire retardants with different primary ingredients. The experiment was conducted in compliance with Article 31, Paragraph 2 of the Enforcement Decree of the Fire Facilities Installation and Management Act and Articles 4 and 7-2 of the Flame Retardant Performance Standards. After flame time, after glow time, char length, and char area were measured. As a result, first, after flame time was measured at 0 seconds regardless of whether the flame retardant treatment was applied. Second, after glow time was relatively long, measuring 22.7 seconds without treatment, which is likely due to the weak fire resistance and high concentration of carbon monoxide generated by the chemical characteristics of the Japanese cypress itself. Third, it was confirmed that the effects of the primary ingredient, phosphorus, in the flame retardant treatment varied depending on the technological development of the manufacturers of the same species of Japanese cypress plywood. In the future, it is expected that the results of this study will provide fundamental data to select flame retardant treatments that show high flame retardant performance according to the botanical characteristics of the wood.
        4,000원