This study aims to develop a regression model using data from the Ammunition Stockpile Reliability Program (ASRP) to predict the shelf life of 81mm mortar high-explosive shells. Ammunition is a single-use item that is discarded after use, and its quality is managed through sampling inspections. In particular, shelf life is closely related to the performance of the propellant. This research seeks to predict the shelf life of ammunition using a regression model. The experiment was conducted using 107 ASRP data points. The dependent variable was 'Storage Period', while the independent variables were 'Mean Ammunition Velocity,' 'Standard Deviation of Mean Ammunition Velocity,' and 'Stabilizer'. The explanatory power of the regression model was an R-squared value of 0.662. The results indicated that it takes approximately 55 years for the storage grade to change from A to C and about 62 years to change from C to D. The proposed model enhances the reliability of ammunition management, prevents unnecessary disposal, and contributes to the efficient use of defense resources. However, the model's explanatory power is somewhat limited due to the small dataset. Future research is expected to improve the model with additional data collection. Expanding the research to other types of ammunition may further aid in improving the military's ammunition management system.
In the military, ammunition and explosives stored and managed can cause serious damage if mishandled, thus securing safety through the utilization of ammunition reliability data is necessary. In this study, exploratory data analysis of ammunition inspection records data is conducted to extract reliability information of stored ammunition and to predict the ammunition condition code, which represents the lifespan information of the ammunition. This study consists of three stages: ammunition inspection record data collection and preprocessing, exploratory data analysis, and classification of ammunition condition codes. For the classification of ammunition condition codes, five models based on boosting algorithms are employed (AdaBoost, GBM, XGBoost, LightGBM, CatBoost). The most superior model is selected based on the performance metrics of the model, including Accuracy, Precision, Recall, and F1-score. The ammunition in this study was primarily produced from the 1980s to the 1990s, with a trend of increased inspection volume in the early stages of production and around 30 years after production. Pre-issue inspections (PII) were predominantly conducted, and there was a tendency for the grade of ammunition condition codes to decrease as the storage period increased. The classification of ammunition condition codes showed that the CatBoost model exhibited the most superior performance, with an Accuracy of 93% and an F1-score of 93%. This study emphasizes the safety and reliability of ammunition and proposes a model for classifying ammunition condition codes by analyzing ammunition inspection record data. This model can serve as a tool to assist ammunition inspectors and is expected to enhance not only the safety of ammunition but also the efficiency of ammunition storage management.
In order to prevent accidents via defective ammunition, this paper analyzes recent research on ammunition life prediction methodology. This workanalyzes current shelf-life prediction approaches by comparing the pros and cons of physical modeling, accelerated testing, and statistical analysis-based prediction techniques. Physical modeling-based prediction demonstrates its usefulness in understanding the physical properties and interactions of ammunition. Accelerated testing-based prediction is useful in quickly verifying the reliability and safety of ammunition. Additionally, statistical analysis-based prediction is emphasized for its ability to make decisions based on data. This paper aims to contribute to the early detection of defective ammunition by analyzing ammunition life prediction methodology hereby reducing defective ammunition accidents. In order to prepare not only Korean domestic war situation but also the international affairs from Eastern Europe and Mid East countries, it is very important to enhance the stability of organizations using ammunition and reduce costs of potential accidents.
Degenerative arthritis is a common joint disease that affects many elderly people and is typically diagnosed through radiography. However, the need for remote diagnosis is increasing because knee pain and walking disorders caused by degenerative arthritis make face-to-face treatment difficult. This study collects three-dimensional joint coordinates in real time using Azure Kinect DK and calculates 6 gait features through visualization and one-way ANOVA verification. The random forest classifier, trained with these characteristics, classified degenerative arthritis with an accuracy of 97.52%, and the model's basis for classification was identified through classification algorithm by features. Overall, this study not only compensated for the shortcomings of existing diagnostic methods, but also constructed a high-accuracy prediction model using statistically verified gait features and provided detailed prediction results.
Elevators are the main means of transport in buildings. A malfunction of an elevator in operation may cause in convenience to users. Furthermore, fatal accidents, such as injuries and death, may occur to the passengers also. Therefore, it is important to prevent failure before accidents happen. In related studies, preventive measures are proposed through analyzing failures, and the lifespan of elevator components. However, these methods are limited to existing an elevator model and its surroundings, including operating conditions and installed environments. Vibration occurs when the elevator is operated. Experts have classified types of faults, which are symptoms for malfunctions (failures), via analyzing vibration. This study proposes an artificial intelligent model for classifying faults automatically with deep learning algorithms through elevator vibration data, hereby preventing failures before they occur. In this study, the vibration data of six elevators are collected. The proposed methodology in this paper removes "the measurement error data" with incorrect measurements and extracts operating sections from the input datasets for proceeding deep learning models. As a result of comparing the performance of training five deep learning models, the maximum performance indicates Accuracy 97% and F1 Score 97%, respectively. This paper presents an artificial intelligent model for detecting elevator fault automatically. The users’ safety and convenience may increase by detecting fault prior to the fatal malfunctions. In addition, it is possible to reduce manpower and time by assisting experts who have previously classified faults.
This study explores multiple variables of an OTT service for discovering hidden relationship between rating and the other variables of each successful and failed content, respectively. In order to extract key variables that are strongly correlated to the rating across the contents, this work analyzes 170 Netflix original dramas and 419 movies. These contents are classified as success and failure by using the rating site IMDb, respectively. The correlation between the contents, which are classified via rating, and variables such as violence, lewdness and running time are analyzed to determine whether a certain variable appears or not in each successful and failure content. This study employs a regression analysis to discover correlations across the variables as a main analysis method. Since the correlation between independent variables should be low, check multicollinearity and select the variable. Cook's distance is used to detect and remove outliers. To improve the accuracy of the model, a variable selection based on AIC(Akaike Information Criterion) is performed. Finally, the basic assumptions of regression analysis are identified by residual diagnosis and Dubin Watson test. According to the whole analysis process, it is concluded that the more director awards exist and the less immatatable tend to be successful in movies. On the contrary, lower fear tend to be failure in movies. In case of dramas, there are close correlations between failure dramas and lower violence, higher fear, higher drugs.
The purpose of this study is to present a novel indicator for analyzing machine failure based on its idle time and productivity. Existing machine repair plan was limited to machine experts from its manufacturing industries. This study evaluates the repair status of machines and extracts machines that need improvement. In this study, F-RPN was calculated using the etching process data provided by the 2018 PHM Data Challenge. Each S(S: Severity), O(O: Occurence), D(D: Detection) is divided into the idle time of the machine, the number of fault data, and the failure rate, respectively. The repair status of machine is quantified through the F-RPN calculated by multiplying S, O, and D. This study conducts a case study of machine in a semiconductor etching process. The process capability index has the disadvantage of not being able to divide the values outside the range. The performance of this index declines when the manufacturing process is under control, hereby introducing F-RPN to evaluate machine status that are difficult to distinguish by process capability index.