검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Elevators are the main means of transport in buildings. A malfunction of an elevator in operation may cause in convenience to users. Furthermore, fatal accidents, such as injuries and death, may occur to the passengers also. Therefore, it is important to prevent failure before accidents happen. In related studies, preventive measures are proposed through analyzing failures, and the lifespan of elevator components. However, these methods are limited to existing an elevator model and its surroundings, including operating conditions and installed environments. Vibration occurs when the elevator is operated. Experts have classified types of faults, which are symptoms for malfunctions (failures), via analyzing vibration. This study proposes an artificial intelligent model for classifying faults automatically with deep learning algorithms through elevator vibration data, hereby preventing failures before they occur. In this study, the vibration data of six elevators are collected. The proposed methodology in this paper removes "the measurement error data" with incorrect measurements and extracts operating sections from the input datasets for proceeding deep learning models. As a result of comparing the performance of training five deep learning models, the maximum performance indicates Accuracy 97% and F1 Score 97%, respectively. This paper presents an artificial intelligent model for detecting elevator fault automatically. The users’ safety and convenience may increase by detecting fault prior to the fatal malfunctions. In addition, it is possible to reduce manpower and time by assisting experts who have previously classified faults.
        4,000원