The amount of sewage sludge emission is gradually increasing every year. However, the Ocean dumping of sewage sludge was prohibited since 2012 by london convention 96 protocol. Therefore, ground disposal method for recycling organic waste or utilizing to energy technology was needed. The heat is generated when sewage sludge has decomposed with the aerobic microbes. In this study, the heat would be applied to dehydrate sewage sludge. The drying efficiency was evaluated according to Air Flow Rate(AFR) and the mixing proportion of the returned sludge. At the experiments used returned sludge Which was dried at 40% moisture content. As a result, the most high temperature was indicated when it mixed 30% and optimal AFR for maintaining aerobic condition was 200 mL/min.kg. During 14days of Biodrying, the highest temperature of reactor was 46℃ and maintained 5~7days are higher than 40℃. and also 18.8% of moisture was eliminated. These results show that using Biodrying to sewage sludge has economic potential compared to hot-air drying and can be one of the method to produce SRF with additional treatment.
The amount of sewage sludge that is emitted is gradually increasing every year. However, since 2012, because of the London Protocol, the oceanic dumping of sewage sludge has been prohibited. Therefore, for recycling organic waste, either the ground disposal method has to be used or technological solutions that develop energy from such waste have to be identified. Heat is generated when the sewage sludge has decomposed by aerobic microbes. In this study, to dehydrate sewage sludge, heat was applied and the drying efficiency was evaluated according to the air flow rate (AFR) and the proportional mixing of the returned sludge. For the experiments, returned sludge that was dried to 40% moisture content was used; consequently, the highest temperature was obtained when the moisture content was 30% and, for maintaining aerobic conditions, the optimal AFR was 200 ml/min·kg. During biodrying for 14 days, the highest temperature of reactor was 46℃, which was maintained at higher than 40℃ for 5-7 days; moreover, 18.8% of moisture was eliminated. These results show that using biodrying for treating sewage sludge has economic potential compared to hot-air drying; moreover, with additional treatment, biodrying can be one of the methods for producing Bio Solid Refuse Fuel (Bio-SRF).
유기성 폐기물 중 하나인 하수슬러지는 하수처리시설 중 1차 침전지와 생물학적 처리 단계에서 대량 발생한다. 이러한 하수슬러지는 재활용, 소각, 매립, 그리고 해양투기 방식으로 처리되어 왔으며, 국내에서는 발생량의 절반이상이 해양투기에 의해 처리되어왔다. 하지만 2012년 런던협약에 의해 해양투기가 금지됨에 따라 하수슬러지 처리에 관한 문제가 급부상 하였고, 최근에는 고형연료로의 재활용에 대한 많은 연구가 이루어지고 있다. 하지만 고형연료의 요구함수율을 충족시키기 위하여 탈수슬러지의 추가적인 건조과정이 필요하다. 하지만 높은 수분을 함유하고 있어 건조과정이 길어지고 고형연료로써 가치가 떨어져 경제적으로 어려움이 있다. 따라서, 본 연구에서는 하수슬러지의 건조방법 중 하나인 Bio-drying공법을 사용하였으며, 무분별하게 폐기되는 한약재 부산물을 혼합하여 적용하였다. Bio-drying은 생분해성 폐기물이 퇴비의 초기 단계를 통해 빠르게 가열되어 폐기물 흐름에서 수분을 제거하여 전체 중량을 감소시키는 과정이다. Bio-drying 공정에서 강제통풍뿐만 아니라 생물학적 열에 의해 건조 속도가 증가한다. 유기물의 호기성 분해를 통해 자연적으로 이용 가능한 생물학적 열의 주요 부분은 혼합 된 슬러지와 관련된 표면 및 결합수를 증발 시키는데 이용된다. 이 열 발생은 보충화석 연료가 필요 없고 최소한의 전력 소비로 Biomass의 수분 함량을 감소시킨다. 이에 본 연구에서는 Bio-drying을 통하여 하수슬러지와 한약재 부산물을 비율에 따라 혼합하여 Bio-drying의 20일 동안의 건조효율을 살펴보았다. 또한, 혼합물의 특성분석을 통하여 고형연료로써의 이용가능성을 평가해보았다.
중금속으로 오염된 토양과 광미는 지하수 및 생태계에 추가적으로 피해를 발생시킨다. 이러한 독성 금속의 축적은 식물의 성장억제 및 인체의 발달이상, 발암과 같은 다양한 질병의 원인이 된다. 오염된 토양에서 중금속을 정화하는 방법으로는 고형화/안정화, 토양세척, 토양경작법 등과 같이 다양한 방법이 있다. 하지만 부지 및 오염특성에 따라 적절한 방법을 사용해야 한다. 적절한 방법 중 하나는 오염된 토양의 고형화/안정화이다. 본 연구의 목적은 오염된 토양 및 광미 내 존재하고 있는 중금속을 고형화/안정화 공법을 적용하여 정화하는 방법을 제안하는데 있다. 본 연구에서는 오염토양 내 중금속을 고형화/안정화 시키고 강도 증진을 위해 MICP 토착미생물과 산업폐기물인 굴패각, 폐석고를 배합하여 고화제로 사용하였다. 국내의 중금속 오염토양과 광미에서 MICP 토착미생물을 분리하였고 균체 지방산 분석을 통하여 동정을 진행하였다. 각각의 시료에서 분리한 균주를 동정한 결과 가장 많이 유사성을 보이는 균주는 Brevibacillus centrosporus 와 Bacillus megaterium 이었다. 또한 MICP 토착미생물의 최적 성장 조건을 도출하였으며, 산업폐기물과 MICP 토착미생물의 최적 배합비를 적용한 공시체의 일축압축강도 분석을 진행하였다. 그 결과 28일 경과 후 일축압축강도는 미국 EPA 폐기물처리 표준 기준을 만족하였으며, 위해성 평가를 위한 TCLP, SPLP 분석 결과 미국 EPA 기준을 만족하였다.