PURPOSES : This study investigated an appropriate saw-cut time frame for jointed concrete pavements. Rectangular slabs (400–500 × 500 × 150 mm) were prepared for saw-cutting tests, and experimental specimens were made using different mixes (type I cement, slag, Fly ash, high early strength cement, etc.) and temperature curing conditions (10, 20, and 25 ℃ as well as variable field conditions). METHODS : A prototype saw-cut device was manufactured to avoid unwarranted joint cutting using uncontrolled saw-cut equipment. The setting times were determined using Proctor penetration resistance (PR) and Ultrasonic pulse velocity (UPV) tests. The setting times were converted to setting maturities. To link the setting time of the concrete with the initiation time for saw cutting, successive parallel cuts were performed on the rectangular slabs for all mixes. A series of saw-cutting attempts were made between the final setting time and the time when the raveling index (denoted by R) exceeded a value of 2. Reconstructed images of the saw-cut segments were then analyzed using ImageJ, which is a commonly used, open-source software tool. RESULTS : Considering the PR and UPV settings, the final setting of the PR test was adopted as the basis for the correlation curve. The saw-cutting maturity at R = 2 was correlated with the setting maturity of each mix and curing condition. CONCLUSIONS : The relationship between the saw-cutting maturity and setting maturity was represented by a lower limit line, based on the test results of this study. The coefficient of determination (R2) for the test was 0.74, indicating that the proposed PR test at the final setting and image-based techniques provided an optimal method by which to determine the saw-cut initiation time. Another upper limit line can be introduced by using the HYPERPAV software tool for any concrete mix under diverse curing conditions..
아스팔트포장층내에 보강용 토목섬유를 설치하여 포장층의 응력-거동특성을 연구한 예는 매우 드물다. 본 연구에서는 유한요소법을 사용하여 지오그리드와 유리섬유로 보강한 층의 응력-변형 특성을 연구하였다. 유리섬유와 지오그리드의 강성이 다른 두가지 종류를 사용하고 설치위치, 포장단면층의 두께 변화를 주어 아스팔트포장층에 미치는 영향을 분석하였다. 포장층내에 발생하는 수직응력, 수직변위, 최대전단응력을 분석한 결과 수직응력, 수직변위 보다 최대전단응력을 크게 감소시키는 경향이 나타났다. 최대전단응력 감소효과가 약 15$\sim$20% 정도 있음을 알 수 있었다. 보강재의 탄성계수가 큰 유리섬유가 가장 효과가 좋으며 깊이 3cm$\sim$5cm에 설치하는 것이 가장 효과가 좋은 것으로 나타났다.
아스팔트포장층내에 보강용 토목섬유를 설치하여 포장층의 응력-거동특성을 연구한 예는 매우 드물다. 본 연구에서는 유한요소법을 사용하여 지오그리드와 유리섬유로 보강한 층의 응력-변형 특성을 연구하였다. 유리섬유와 지오그리드의 강성이 다른 두가지 종류를 사용하고 설치위치, 포장단면층의 두께 변화를 주어 아스팔트포장층에 미치는 영향을 분석하였다. 포장층내에 발생하는 수직응력, 수직변위, 최대전단응력을 분석한 결과 수직응력, 수직변위 보다 최대전단응력을 크게 감소시키는 경향이 나타났다. 최대전단응력 감소효과가 약 15~20% 정도 있음을 알 수 있었다. 보강재의 탄성계수가 큰 유리섬유가 가장 효과가 좋으며 깊이 3cm~5cm에 설치하는 것이 가장 효과가 좋은 것으로 나타났다.