Liquefied-wood polymer composite was prepared and mechanical properties was evaluated to develop potential utility of liquefied wood. The liquefied wood was made from waste wood and chemical modified with acetic anhydride and maleic anhydride (MA), phtalic anhydride (PA). The composite sheet was prepared from modified liquefied-wood and polymer(PE). The mechanical, chemical and microscopical properties composite sheet were investigated. The results were summarized as follows, 1. The tensile strength was increased and breaking elongation of composite sheet was decreased with the time of acetylation and the dosage of MA. 2. The Young's modulus of composite sheet was gradually decreased with the dosage of PA. 3. The peak intensity of 1737cm-1 in FT-IR spectra of chemical modified liquefied woods was increased. 4. The dispersity of liquefied woods with PE was improved with chemical modification.
Cellulolytic enzymes were prepared from alkaline resistant microorganisms which were newly screened from calcic soil. Characteristics of enzymes and enzymatic deinking efficiency of wastepaper were investigated. The results were summarized as fellows: 1. The recovery rate of crude enzyme was 93.7% in Bio-B and 57.4% in Bio-F. 2. The protein content in crude enzymes was lowest and the thermal stability of crude enzymes was highest in Bio-F. 3. The brightness gain of Bio-F deinked pulp was best in ONP and Bio-B deinked pulp was best in MOW. 4. The reject yield was increased with enzymatic deinking flotation process. 5. The residual ink area of paper was increased with enzymatic deinking and large size of ink particles were remained in paper.