검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2015.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This paper presents the impact of partial shading on CuInxGa(1-x)Se2(CIGS) photovoltaic(PV) modules with bypass diodes. When the CIGS PV modules were partially shaded, the modules were under conditions of partial reverse bias. We investigated the characterization of the bypass diode and solar cell properties of the CIGS PV modules when these was partially shaded, comparing the results with those for a crystalline silicon module. In crystalline silicon modules, the bypass diode was operated at a partial shade modules of 1.67 % shading. This protected the crystalline silicon module from hot spot damage. In CIGS thin film modules, on the other hand, the bypass diode was not operated before 20 % shading. This caused damage because of hotspots, which occurred as wormlike defects in the CIGS thin film module. Moreover, the bypass diode adapted to the CIGS thin film module was operated fully at 60% shading, while the CIGS thin film module was not operated under these conditions. It is known that the bypass diode adapted to the CIGS thin film module operated more slowly than that of the crystalline silicon module; this bypass diode also failed to protect the module from damage. This was because of the reverse saturation current of the CIGS thin film, 1.99 × 10−5 A/cm2, which was higher than that of crystalline silicon, 8.11 × 10−7 A/cm2.
        4,000원
        2.
        2014.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The use of solar energy generation is steadily increasing, and photovoltaic modules are connected in series to generate higher voltage and power. However, solar panels are exposed to high-voltage stress (up to several hundreds of volts) between grounded module frames and the solar cells. Frequent high-voltage stress causes a power-drop in the modules, and this kind of degradation is called potential induced degradation (PID). Due to PID, a significant loss of power and performance has been reported in recent years. Many groups have suggested how to prevent or reduce PID, and have tried to determine the origin and mechanism of PID. Even so, the mechanism of PID is still unclear. This paper is focused on understanding the PID of crystalline-silicon solar cells and modules. A background for PID, as well as overviews of research on factors accelerating PID, mechanisms involving sodium ions, PID test methods, and possible solutions to the problem of PID, are covered in this paper.
        4,300원