본 연구의 목적은 스마트 헬스케어를 위해 접촉식 직물전극의 구조가 심장활동 신호 획득에 미치는 영향을 연구하는 것이다. 본 연구에서는 심장활동 신호 측정을 위하여 전극의 크기와 구성방식을 조작한 6종의 접촉식 직물전극을 컴퓨터 자수 방식으로 구현하였고, 이를 가슴밴드에 부착하여 응용형 리드 II(modified Lead II) 방식으로 심장활동 신호를 검출하였다. 건강한 신체의 남성 4명을 대상으로 서서 정지한 자세에서 각 직물전극을 사용하여 심장활동 신호를 검출하였으며, 모든 유형의 전극에 걸쳐 4회씩 반복측정 하였다. 심장활동 신호의 수집을 위해 BIOPAC ECG100 장비를 사용하여 1 ㎑로 샘플링하였으며, 검출된 원 신호를 대역통과 필터를 사용하여 필터링하였다. 직물전극의 구조에 따른 심장활동 신호 획득의 성능을 비교하기 위하여 신호의 파형과 크기를 파라미터로 하여 정성적 분석을 실시하였고, 각 전극을 통하여 획득된 심장활동 신호의 SPR(signal power ratio)을 산출함으로써 정량적 분석을 실시하였다. 산출된 SPR 값을 대상으로 하여 비모수 통계분석 방식의 차이검정과 사후검정을 실시함으로써 6개 전극의 구조에 따른 심장활동 신호 획득의 성능 차이를 구체적으로 분석하였다. 연구 결과 접촉식 직물전극의 구조에 따라 심장활동 신호의 품질에는 정성적, 정량적 측면에 걸쳐 모두 주요한 차이가 있는 것이 고찰되었다. 접촉식 직물전극의 구성 측면에 있어서는 입체전극이 평면전극에 비해 더 우수한 품질의 신호가 검출되는 것으로 나타났다. 한편 3가지 전극 크기에 따른 심장활동 신호 획득의 유의한 성능 차이는 발견되지 않았다. 이러한 결과는 심장활동 신호 획득을 위한 접촉식 직물전극 구조의 두 가지 요건 중 구성방식(평면/입체)이 웨어러블 헬스케어를 위한 심장활동 신호 획득의 성능에 주요한 영향을 미치는 것을 시사한다. 본 연구 결과를 기반으로 후속 연구에서는 직물전극이 일체형으로 통합된 의복형 플랫폼을 구현하고 성능 고도화 방안을 연구함으로써, 시공간의 제약 없이 고품질의 심장활동 모니터링이 가능한 스마트 의류 기술을 개발하고자 한다.
웨어러블 광섬유 직물의 주요 요건은 의류에 적용하기 위해 높은 유연성을 전제로 해야 한다는 점과 인체의 평평한 부위뿐만 아니라 굴곡이 있는 구간에서도 발광 효과, 즉 휘도를 유지해야 한다는 점이다. 따라서 본 연구에서는 위 조건을 충족하는 웨어러블 광섬유 직물의 세부 구조를 직조(weaving) 타입과 자수(computer embroidery) 타입의 2가지 로 제작하였고, 이를 토대로 다음의 두 가지 조건에서 실험을 실시하였다. 첫째, 굴곡이 없는 평평한 상태에서의 웨어러블 광섬유 직물을 1㎝간격으로 총 10개의 측정점을 좌표화하여 그 휘도를 측정하였다. 둘째, 인체 부위 중 입체적 굴곡이 발생하는 팔뚝 부위에 가로 방향으로 웨어러블 광섬유 직물을 배치하고 1㎝ 간격으로 총 10개의 측정점을 좌표화하여 그 휘도값을 측정하였다. 그 결과 직조(weaving) 타입의 경우, 평평한 상태에서의 휘도값은 최대 5.23cd/㎡, 최소 2.74cd/㎡, 평균 3.56cd/㎡, 표준편차 1.11cd/㎡로 나타났고, 팔뚝 부위에서의 휘도값은 최대 7.92cd/㎡, 최소 2.37cd/㎡, 평균 4.42cd/㎡, 표준편차 2.16cd/㎡로 나타났다. 또한 자수(computer embroidery) 타입의 경우, 평평한 상태에서의 휘도값은 최대 7.56cd/㎡, 최소 3.84cd/㎡, 평균 5.13cd/㎡, 표준편차 1.04cd/㎡로 나타났고, 팔뚝 부위에서의 휘도값은 최대 9.62cd/㎡, 최소 3.63cd/㎡, 평균 6.13cd/㎡ 표준편차 2.26cd/㎡ 나타났다. 즉, 자수(computer embroidery) 타입의 경우가 직조(weaving) 타입의 경우에 비해 더 높은 발광 효과를 보였는데 이는 자수(computer embroidery) 타입의 세부 구조가 배면 소재로 인해 빛의 손실을 줄일 수 있었기 때문으로 사료된다. 또한 두 타입 모두에서 팔뚝 부위의 휘도가 평평한 상태에 비해 각각 124%, 119%로 나타나, 인체의 굴곡에도 본 웨어러블 광섬유 직물의 발광 효과가 우수하게 나타남을 알 수 있었다. 이는 빛의 파동설을 정의한 호이겐스의 원리(Huygens’ principle), 빛 파면의 진행 방향과 이루는 각도(θ)의 크기에 커지면 이와 비례하여 빛의 세기도 커진다는 호이겐스-프레넬-키르히호프 원리 (Huygens-Fresnel-Kirchhoff principle)와 일치하는 결과이다.