검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2006.09 KCI 등재 서비스 종료(열람 제한)
        오늘날 스포츠, RTS, RPG 게임과 같이 멀티 플레이어가 한 팀을 이루는 집단형 방식의 게임은 팀 인공지능 기술이 더욱 필요하다. 기존의 독립적인 지능형 에이전트는 스스로 문제를 해결하는 자율성 향상 연구에 치중하였으나, 이는 다른 에이전트간의 협동 및 상호작용 능력이 부족하다. 이를 위해 본 논문은 다중에이전트 시스템에서 효과적인 역할 분담과 자율성을 갖는 레벨통합 접근방식을 소개한다. 복잡한 목표를 성취하기 위해 에이전트의 역할 정보를 이용하여 각자의 목표를 할당하고 각 에이전트는 맡은 역할을 동적인 환경에서 스스로 판단하고 행동한다. 팀 전체의 목표는 상호 보완된 역할 분담의 전략적인 측면에서 조정한다. 각 에이전트는 데이터보드를 이용하여 서로의 상태 정보를 공유하여 상호 협동을 유도한다. 역할이 할당된 각 에이전트는 스스로 계획기능을 갖고 있어 동적인 환경에서 적합한 행동을 취한다. 이 협동과 상호작용 과정에서 충돌의 문제점이 발생하는데 이를 제어하는 조정 에이전트의 역할을 전략적 측면에서 접근한다. 본 논문에서 제시하는 레벨통합 접근방식이 기존의 중앙 집권적 접근방식, 분권적 접근방식과 비교 실험하여 기존 방식보다 성능이 향상됨을 보인다.