검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A coal dust scattered from storage and transfer facilities of coal power plant is led to a air pollution. It is difficult to reduce some scattered coal dust by used filter system such as bag filter and electric precipitator because of being scattered in the large area. The need to cut down coal dust generation has been increased as being reinforced regulation to reduce dust from coal power plant. So this is a experimental basic study which reduces coal dust generation. This study is to reduce scattering rate of the coal dust by collision and interception between fine fog droplet and coal dust particles. The reducing rate of coal dust is evaluated by droplet size of 10㎛ sprayed. It is evaluated that capture efficiency is lower as a coal dust concentration become higher. And also it is increase as droplet size is decrase and droplet density is increase. It is resulted that coal dust coefficient to optimize the fog system design is 25μg/m3/l/hr and capture efficiency of coal dust is about 80%.
        4,000원
        3.
        2016.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study is to evaluate the structural safety of the spherical-helical turbine for hydro-power. We analyze fluid-structure interaction of the spherical-helical turbine for hydro-power using ANSYS-CFX and Mechanical. The maximum combined stress, deformation and safety factor of the spherical-helical turbine in cases of three types of materials were obtained by fluid-structural analysis. From structural analysis, the maximum value of the equivalent stress occurred at the shaft of the turbine for three material types. In case of a polyethylene turbine blades, the maximum equivalent stress and safety factor were 3.46 MPa and 7.23. Polyethylene turbine blades were evaluated to be safe except of the turbine shaft. Several researches will be performed based on the results of this study and more research and development of technologies are needed in this field.
        4,000원
        4.
        2016.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This is to develop a micro water turbine which makes some power from just a fluid velocity in the water pipe. While power is produced from impulsive force which generated by a high head in the case of existing water turbine, this is to produce a power from rotating force of helical turbine which rotated by fluid velocity in the water pipe. Some results of analysis fluid pattern at turbine blade for design shows that bubble is generated from turbulence surrounding blade and pulsatory motion generated as fluid being blocked and opened by blade due to turbine structure. This two phenomena cause to lower power production efficiency and shorten turbine durability. So this is studied to minimize bubble generation and pulsation for optimizing design of turbine blade. Therefore it is determined that the number of blade is three, geometric form of blade is NACA 4420 and angle of blade is 30 degree. An experiment equipment of water turbine is manufactured on the base of these factors(NACA 4420, angle 30。). It is obtained that power production of turbine increases in proportion to velocity which is changed from 1.7 m/sec to 3.5 m/sec. When fluid velocity is 1.7m/sec the power production of turbine is 355W. Power production increase continuously as increasing the fluid velocity and power is 2kW on 3m/sec of fluid velocity.
        4,000원
        5.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The waste casting sands generated from foundry is about 4,000 tons/day and the great part of them is handled by the method of reclamation and just 10% of them is recycled as a sand. This study is to produce the iron lump of high quality material through melting iron particle which is obtained from the waste casting sands. By using the high frequency inductive melting furnace after separating iron particle from casting sand by collision and vibrating classifier, iron lump is produced from melting iron particles. The iron lump of iron content of 96.95% is produced from iron particle of 68.05% through this process. It was investigated that the cost of iron lump is four times higher than the one of iron particle and to produce iron lump is worth to 325 won per kg against iron particle with considering the consumed power(electric energy). Therefore, to produce iron lump from waste casting sands is not only to be economical worth but also to strengthen the ground resources system.
        4,000원