검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        연안해역의 수질특성 및 일차생산 증가 메커니즘을 이해하는 데에 기초 자료로 활용하기 위하여, 많은 양의 담수 유입 후 규조류가 대량 번식한 상태와 담수가 유입되지 않고 적조가 발생하지 않은 상태의 해수의 수질특성을 조사차였으며 그 결과를 요약하면 아래와 같다. 1) 호우로 많은 양의 담수가 유입된 해역에서 규조류인 Skeletonema costatum와 Thalassiosira spp.가 각각 1,200~5,000cells/mL, 750~1,200cells/mL의 농도로 관찰되었다. 2) 규조류가 대량으로 증식하지 않은 곳보다 규조류가 대량으로 증식한 곳에서 수온, PH, 용존산소농도가 높게 조사되어, 두 곳 사이의 거리가 20m 정도에 불과함에도 불구하고 두 곳의 수질특성 차이는 뚜렷하게 나타났다. 3) 규조류가 대량으로 증식하지 않은 곳보다 규조류가 대량으로 증식한 곳에서 질소 인, 규소의 농도가 낮게 조사되어, 호우로 질소, 인, 규소보다는 규조류가 증식하기 위해 필요한 미량원소가 육지로부터 풍부하게 유입된 것으로 보인다. DIN/DIP, DIN/SiO2-Si 비는 모두 규조류가 대량 증식한 정점과 그렇지 않은 정점간의 뚜렷한 차이는 없었다.
        4,000원
        2.
        2007.05 KCI 등재 서비스 종료(열람 제한)
        The mechanism of water pollution in Lake Shihwa, one of highly eutrophicated artificial lakes in Korea, has been studied using a numerical 3D physical-biochemical coupled model. In this study, the model was applied to estimate the contribution of land-based pollutant load to water quality of heavily polluted Lake Shihwa. The chemical oxygen demand(COD) was adopted as an index of the lake water quality, and the spatial distribution of an average COD concentration during the summer from 1999 to 2000 was simulated by the model. The simulated COD showed a good agreement with the observed data. According to reproducibility of COD, the highest levels between 8 and 9 mg/L were shown at the inner site of the lake with inflow of many rivers and ditches, while the lowest was found to be about 5 mg/L at the southwestern site near to dike gate. In the prediction of water quality of Lake Shihwa, COD showed still higher levels than 3 mg/L in case of reduction of 95% for land-based pollutant load. This suggests that the curtailment of land-based pollutant load is not only sufficient but the improvement of sediment quality or the increase of seawater exchange should be considered together to improve a water quality in Lake Shihwa.
        3.
        2002.12 KCI 등재 서비스 종료(열람 제한)
        To utilize coastal aquaculture ground bottom sediment in which concentrations of harmful pollutants are low and organic content is high as an organic fertilizer alkaline stabilizers such as CaO, Oyster shell, Mg(OH)2 were added to the bottom sediment organic additives of livestock or food wastes. Nutritive qualities of crude fertilizers were measured to examine effects of alkaline stabilizers and organic waste additions. The Mg(OH)2-added crude fertilizer had significantly lower total carbon(T-C) and nitrogen(T-N) content, reflecting the dilution effect due to great amount of Mg(OH)2 addition. However, the addition of oyster shell had no significant effect on the T-C and T-N content of the fertilizer. P2O5 and K2O content was considerably higher in the mixed sample of aquaculture ground bottom sediments and livestock wastes than in the mixture of the sediments and food wastes, resulting from higher P2O5 and K2O content in livestock wastes. Addition of Mg(OH)2 increased the content of MgO in the crude fertilizer but significantly reduced the content of other nutritive elements such as P2O5, K2O and CaO. Addition of oyster shell as an alkaline stabilizer seemed to have the advantage of saving time and expenses for dryness due to its role as a modulator of water content. Moreover, additions of effect Mg(OH)2 decreased the concentrations of heavy metals in the fertilizer by the dilution while additions of oyster shell had no influence on heavy metal concentrations in the fertilizer.
        4.
        2001.08 KCI 등재 서비스 종료(열람 제한)
        In an attempt to evaluate the possibility of producing an organic fertilizer using sediments from coastal farming areas, the chemical composition, bacteriological quality and heavy metals in the sediments alkalized by quicklime and magnesium hydroxide were analyzed. The optimum reaction was obtained from the following conditions : a 1:4 mixture of dry sediment to food wastes and the addition of 30% quicklime to the mixture. According to the classification standard for compost constituent by Higgins, all composts had a low or intermediate grade in T-N and K2O content, a low grade in P2O5 and a high grade in CaO and MgO content. Stabilization by quicklime and magnesium hydroxide is likely to inhibit the bacterial decomposition of organic matter and the activity of pathogenic organisms. Raising the pH of stabilized sediments to 12 for 2 hours(PSRP criteria of EPA) allowed 99.99% of the coliform group, fecal group and viable cell count to be reduced. The results suggested that the crude fertilizer produced by alkaline stabilization method was innoxious and thereby the sediments from coastal farming areas could be used as organic fertilizer.