원전 해체 공정 중 절단 및 용융작업에서 발생되는 방사성 에어로졸은 작업종사자의 호흡을 통해 내부 피폭을 유발하게 된다. 이에 따라 해체 중 방사성 에어로졸로 인한 작업종사자의 내부피폭 평가가 필요한 실정이다. 정확한 내부피폭평가를 위해서는 작업종사자의 작업환경 실측값이 필요하지만 실측에 어려움이 있을 시에는 국제방사선방호위원회(ICRP)에서 제시하는 섭취량 분율 및 입자 크기 등의 권고 값을 통해 내부피폭선량을 추정할 수 있다. 본 논문에서는 입자 크기의 선정은 ICRP에서 권고하는 작업종사자의 고려 입자 크기인 5 μm을 적용하였다. 발생량의 경우, 불가리아의 Kozloduy 부지 내의 용융시설에서 발생 된 에어로졸의 포집량 데이터를 이용하여 섭취량을 산정하였다. 또한 이를 이용해 작업종사자의 체내 및 배설물에서의 방사능 수치를 계산하고 BiDAS 전산코드를 통해 내부피폭 평가를 수행하였다. Type M이 0.0341 mSv, Type S가 0.0909 mSv로 두 흡수 형태 각각 국내 연간 선량 한도의 0.17%, 0.45% 수준을 나타내었다.
국내에 분포하는 산지는 급경사지의 풍화심도와 교란된 붕적층으로 인해 매년 대규모 산사태가 발생하고 있으며 특히, 토석류는 산지 계곡의 퇴적심도가 경사도에 따른 붕괴심도를 초과하면 전단강도의 감소로 인해 액상화로 발생하는 경향이 크다. 따라서 강우강도에 따른 지질특성별 산사태 붕괴심도 결정이 매우 중요하다. 이 연구에서는 산사태 발생지를 지질별로 분류하여 현장조사를 실시하였으며, 현장조사에서 시료를 채취하여 광물특성을 파악 후 ASTER 위성영상 분석 및 사면안정해석을 수행하였다. 지질별 사면안정해석결과 단일 강우강도에 대하여 누적강우량 및 사면 경사각이 증가할수록 안전율이 점차 감소함을 보였으며 붕괴심도는 점차 증가하였다. 편마암 풍화토와 이암 풍화토의 초기 붕괴심도는 1 m 를 전후하여 발생하는 것에 반하여, 화강암 풍화토는 상대적으로 얕은 0.3 m 를 전후하여 붕괴심도가 나타나는 것으로 나타났다. 붕괴심도 산정을 통한 지질별 사태물질 추정량은 사면경사 25°, 토층심도 3 m, 경사길이 100 m 로 가정 시 편마암 풍화토 351 ㎥, 이암 풍화토 333 ㎥, 화강암 풍화토 192 ㎥ 의 순서로 편마암 풍화토의 사태물질 발생량이 화강암 풍화토의 약 1.8 배 수준으로 나타났다. 사면경사 30°, 토층심도 5 m, 경사길이 100 m 로 가정 시 편마암 풍화토 1095 ㎥, 이암 풍화토 873 ㎥, 화강암 풍화토 359 ㎥ 의 순서로 편마암 풍화토가 화강암 풍화토에 비하여 발생량이 3배 이상이 됨을 확인하였다. 산출된 붕괴심도와 사태물질 체적 및 ASTER 위성영상 분석은 산사태 취약지역의 예방을 위한 모니터링 및 경보 우선순위를 제공하는데 도움이 될 것이다.