검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 YOLO(You Only Look Once)-Segmentation 기반 해양생물 탐지 모델의 성능 비교와 수중 이미지의 색상 왜곡 보정을 위한 딥러닝 모델 구축에 중점을 둔다. 탐지 모델 구축에는 Ultralytics에서 공식적으로 배포하는 YOLO의 버전별 객체분할 모델인 YOLOv5-Seg, YOLOv8-Seg, YOLOv9-Seg, YOLOv11-Seg를 활용하였으며, 22종의 해양생물 데이터셋을 사용해 동일한 학습 과정을 거쳤다. 이 를 통해 각 버전의 탐지 성능을 비교한 결과, YOLOv9c-Seg 모델이 정밀도(Precision) 0.908, 재현율(Recall) 0.912, mAP@50 0.943으로 가장 높 은 성능을 기록하며 최적의 모델로 선정되었다. 또한, 수중 환경에서 발생하는 색상 왜곡 문제를 해결하고 탐지 정확도를 높이기 위해 CLAHE, White Balance, Image Filter 등의 RGB 요소 변환 기법을 적용한 PhysicalNN 기반 이미지 보정 모델을 구축하였다. 선정된 탐지 모델 과 이미지 보정 모델을 이용해 수중영상 내 탐지된 생물의 위치를 정확히 파악하고, Monocular Depth Estimation(MDE) 알고리즘과 거리 및 크기 측정을 위한 가이드 스틱을 활용하여 대상 생물의 거리와 크기를 추정하였다. 이를 통해 단안 카메라 영상만으로도 3차원 공간의 해 양생물 크기와 이에 따른 체중을 간접적으로 추정하였으며, 향후 해양 생태계 모니터링에 활용할 수 있는 가능성을 시사한다.
        4,200원
        2.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수산자원의 지속 가능한 관리와 증대는 전 세계적으로 중요한 이슈로 부상하고 있으며, 본 연구는 이에 대응하는 한국수산자 원공단의 수산자원 현존량 추정을 위한 딥러닝 기반 수산자원 증대사업 효과조사 기법 개발을 위해 구성 기술 중 하나인 어류 탐지 및 분류 모델 구축과 성능 비교를 수행하였다. 다양한 크기의 YOLOv8-Seg 모델에 어류 이미지 데이터셋을 학습한 후 각 성능평가 지표를 비 교 분석하여 적용 가능한 최적의 모델을 선정하고자 하였다. 모델 구축에 사용된 자료는 총 12종의 어류로 이루어진 36,749장의 이미지와 라벨 파일로 이루어지며, 학습에는 증강을 적용하여 데이터의 다양성을 증가시켰다. 동일한 환경 및 조건에서 총 다섯 개의 YOLOv8-Seg 모델을 학습 및 검증한 결과 중간 크기의 YOLOv8m-Seg 모델이 가장 짧은 13시간 12분의 학습 시간과     0.933, 추론 속도 9.6 ms로 높은 학습 효율성과 우수한 탐지 및 분류 성능을 보였으며, 각 지표 간의 균형을 고려할 때 실시간 처리 요구사항을 충족하는 가장 효율 적인 모델로 평가되었다. 이와 같은 실시간 어류 탐지 및 분류 모델을 활용하여 효율적인 수산자원 증대사업의 효과조사가 가능할 것으 로 보이며, 지속적인 성능 개선 및 추가적인 연구가 필요할 것으로 사료된다.
        4,000원