검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2024.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        수산자원의 지속 가능한 관리와 증대는 전 세계적으로 중요한 이슈로 부상하고 있으며, 본 연구는 이에 대응하는 한국수산자 원공단의 수산자원 현존량 추정을 위한 딥러닝 기반 수산자원 증대사업 효과조사 기법 개발을 위해 구성 기술 중 하나인 어류 탐지 및 분류 모델 구축과 성능 비교를 수행하였다. 다양한 크기의 YOLOv8-Seg 모델에 어류 이미지 데이터셋을 학습한 후 각 성능평가 지표를 비 교 분석하여 적용 가능한 최적의 모델을 선정하고자 하였다. 모델 구축에 사용된 자료는 총 12종의 어류로 이루어진 36,749장의 이미지와 라벨 파일로 이루어지며, 학습에는 증강을 적용하여 데이터의 다양성을 증가시켰다. 동일한 환경 및 조건에서 총 다섯 개의 YOLOv8-Seg 모델을 학습 및 검증한 결과 중간 크기의 YOLOv8m-Seg 모델이 가장 짧은 13시간 12분의 학습 시간과     0.933, 추론 속도 9.6 ms로 높은 학습 효율성과 우수한 탐지 및 분류 성능을 보였으며, 각 지표 간의 균형을 고려할 때 실시간 처리 요구사항을 충족하는 가장 효율 적인 모델로 평가되었다. 이와 같은 실시간 어류 탐지 및 분류 모델을 활용하여 효율적인 수산자원 증대사업의 효과조사가 가능할 것으 로 보이며, 지속적인 성능 개선 및 추가적인 연구가 필요할 것으로 사료된다.
        4,000원
        2.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        기후변화 영향으로 이상고수온, 태풍, 홍수, 가뭄 등 재난 및 안전 관리기술은 지속적으로 고도화를 요구받고 있으며, 특히 해 수면 온도는 한반도 주변에서 발생되는 여름철 적조 발생과 동해안 냉수대 출현, 소멸 등에 영향을 신속하게 분석할 수 있는 중요한 인자 이다. 따라서, 본 연구에서는 해수면 온도 자료를 해양 이상현상 및 연구에 적극 활용되기 위해 통계적 방법과 딥러닝 알고리즘을 적용하 여 예측성능을 평가하였다. 예측에 사용된 해수면 수온자료는 흑산도 조위관측소의 2018년부터 2022년까지 자료이며, 기존 통계적 ARIMA 방법과 Long Short-Term Memory(LSTM), Gated Recurrent Unit(GRU)을 사용하였고, LSTM의 성능을 더욱 향상할 수 있는 Sequence-to-Sequence(s2s) 구조에 Attention 기법을 추가한 Attention Long Short-Term Memory (LSTM)기법을 사용하여 예측 성능 평가를 진행하 였다. 평가 결과 Attention LSTM 모델이 타 모델과 비교하여 더 좋은 성능을 보였으며, Hyper parameter 튜닝을 통해 해수면 수온 성능을 개 선할 수 있었다.
        4,000원
        3.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        인공위성은 최첨단 기술로써 시공간적 관측제약이 적어 해양 사고에 효과적 대응과 해양 변동 특성 분석 등으로 각국의 국가 기관들이 위성 정보를 활용하고 있다. 하지만 고해상도 위성 관측 기반 해수면 온도 자료(Operational Sea Surface Temperature and Sea Ice Analysis, OSTIA)는 위성의 기기적, 또는 지리적 오류와 구름으로 인해 낮게 관측되거나 공백으로 처리되며 이를 복원하기까지 수 시간이 소요된다. 본 연구는 최신 딥러닝 기반 알고리즘인 LaMa 기법을 활용하여 결측된 OSTIA 자료를 복원하고, 그 성능을 기존에 이용되어 온 세 가지 영상처리 기법들의 성능과 비교하여 평가하였다. 결정계수(R²)와 평균절대오차(MAE) 값을 이용하여 각 기법의 위성 영상 복원 성 능을 평가한 결과, LaMa 알고리즘을 적용하였을 때의 R²과 MAE 값이 각각 0.9 이상, 0.5℃ 이하로, 기존에 사용되어 온 쌍 선형보간법, 쌍 삼차보간법, DeepFill v1 기법을 적용한 것보다 더 우수한 성능을 보였다. 향후에는 현업 위성 자료 제공 시스템에 LaMa 기법을 적용하여 그 가능성을 평가해 보고자 한다.
        4,000원
        4.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        최근 연안지역의 대규모 개발로 인해 고파랑 내습과 강한 태풍으로 발생된 월파는 연안지역의 많은 인명 및 재산피해를 발생시켰으나 연안지역의 특성을 고려한 침수·범람 연구는 미비한 실정이다. 본 연구는 ADCSWAN(ADCIRC+SWAN) 모델과 FLOW-3D 모델을 적용하여 해일 및 파랑의 복합요소에 대한 침수범람을 재현하기 위한 방법론에 대한 연구이다. 본 연구에서는 ADCSWAN(ADCIRC+SWAN) 모델을 이용하여 FLOW-3D 모델의 경계자료(해수위, 파랑)를 추출하고, FLOW-3D 모델 입력값으로 적용하여 태풍 차바 통과시 부산 마린시 티를 대상으로 해일과 월파에 의한 침수범람을 재현하였다. 또한 기존 월파량 경험식과 FLOW-3D 모델로 계산된 월파량을 비교하였으며, 침수범람은 한국국토정보공사의 침수흔적도를 활용하여 정성적인 검증을 수행하여, 본 연구의 유효성을 검토하였다.
        4,200원
        5.
        2015.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 논문에서는 기존의 POM(Princeton Ocean Model) WAD(Wetting and Drying) 모형을 연안역에서 조석조류의 계산에 적합하도록 개경계에서 조석조화상수를 입력하여 사용할 수 있도록 하였고, CTS(Computing Time Saving) 기법을 도입하여 계산시간을 단축할 수 있도록 개선하였다. 이와 같이 수정된 모형은 장방형 내만에 하나의 절점을 갖는 정상파에 대한 해석해 실험과 유속 및 열확산에 대한 수리모형 실험결과와 비교하여 좋은 결과를 얻었다. 그리고 간석지가 발달한 광양만의 현지해역에 이 CTS 기법을 적용하여 계산시간이 39.4% 단축되는 결과를 얻었다.
        4,200원