검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.02 KCI 등재 서비스 종료(열람 제한)
        Filter and microbalance sensitivity in measuring fine particulate matter mass is greatly influenced by particulate properties and environmental factors. Temperature and humidity control inside a measuring chamber with a microbalance, and neutralization of static charges on filters are essential for consistent filter weighing. Commercial weighing chambers are expensive with a unit price of tens of millions won. This study developed an inexpensive weighing chamber for weighing fine particulate matter and evaluatedits weighing performance. A microbalance with 1 μg precision was used to measure the weight of a filter. The microbalance was set in a transparent acrylic enclosure (100 x 60 x 65 cm3) equipped with temperature and humidity control equipments. Weighing performance of the chamber was examined using Teflon filters with or without different particulate sample types. Temperature and humidity were maintained at approximately 23.2±1.2 ℃ and 36.2±1.8℃ for 8 days, respectively.
        2.
        2016.03 KCI 등재 서비스 종료(열람 제한)
        Oxidative and thermal degradation of alkanolamines for a promising CO2 capture technology of absorption might cause decrease in CO2 capture efficiency and formation of hazardous byproducts. In this study, characteristics of a representative absorbent of monoehtanolamine (MEA) were examined for a long term operation using a laboratory scale absorption system. An CO2 absorption system with ID 56 mm and absorption zone height 100 cm was developed for the characterization. Absorption solution of 30 wt% MEA was circulated at 100 mL/min to treat air with 15% CO2 and 1 ppm NO at 10 L/min. Temperatures of absorber and stripper were maintained at 40℃ and 120℃, respectively. For the course of 5 weeks continuous operation, MEA concentration was decreased approximately by 70% and CO2 removal efficiency was dropped from 95% to 65%. Ionic byproducts of NH4 +, NO2 -, and NO3 - were accumulated up to 48 g/mL, 0.2 g/mL, and 1.5 g/mL, respectively, tracking the variation of MEA concentration. Formation of various organic byproducts were also observed.