검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2021.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구는 메꽃과 6종의 식물에 대해 신속하고 비파괴적으로 분류하기 위해 근적외선 (Vis-NIR) 스펙트럼을 이용하였고 데이터의 전처리와 머신러닝 기술을 적용하였다. 전국적으로 분포하는 메꽃과 6종에 대해 야외에서 휴대용 분광기를 이용하여 판별하였다. 식물의 잎의 표면에서 400~1,075 nm의 근적외선 스펙트럼 (1.5 nm)을 수집하였 다. 수집된 스펙트럼 데이터는 3가지의 전처리와 raw데이터를 이용하였고 4종류의 머신러닝 모델을 적용하여 높은 판별 정확도를 확인하였다. 전처리와 머신러닝 모델의 조합을 통해 분석된 판별의 정확도는 43~99%의 범위로 분석되었고, standard normal variate 전처리와 support vector machine 머신러닝 모델의 조합에서 판별 정확도가 98.6% 로 가장 높게 나타났다. 본 연구에서 수집된 스펙트럼은 식물의 성장단계, 다양한 측정 지역 및 잎에서의 측정 위치 등과 같은 요인과 더불어 데이터 분석을 위한 조건으로 최 적의 전처리와 머신러닝 기술을 적용한다면 메꽃과 식물의 야외에서의 정확한 분류가 가능하고 이들 식물의 효과적인 관리와 모니터링에 활용할 수 있을 것으로 판단되었다.
        4,000원