Ethyl formate (EF) is a naturally occurring insecticidal compound and is used to control pests introduced from abroad, in quarantine, by a fumigation method. In particular, it is mainly used as a substitute for methyl bromide and is less toxic to humans and less harmful to plants. This study aimed to investigate the possible acute toxicity of EF to useful organisms, and how to reduce phytotoxicity in watermelon, zucchini, and oriental melon. After fumigation with EF for 2 h, the LC50 values for earthworms, honey bees, and silkworms were 39.9, 7.09, and 17.9 g m-3, respectively. The degree of susceptibility to EF was in the order of earthworms, silkworms, and honey bees based on the LC50 value, and EF fumigation induced stronger acute toxicity to honey bees. Phytotoxicity was observed in watermelon leaves treated with a concentration of 7.5 g m-3 EF, and when treated with a concentration of 10.0 g m-3, it was confirmed that the edges of watermelon leaves were charred and seemed to be damaged by acids. Zucchini and melon, and other cucurbits, showed strong damage to the leaves when treated with a concentration of 10 g m-3, and sodium silicate, at concentrations of 10% and 20%, was used to reduce phytotoxicity. Therefore, acute toxicity towards nontarget organisms and phytotoxicity during the fumigation of EF should be reduced for efficient agricultural pest control.
Ethyl formate (EF) is a potent fumigant replacing methyl bromide. The use of EF is limited to a quarantine process. Appling EF to agricultural field as a safe insecticide in greenhouse give us valuable benefits including less residual concern. In this regard, residual pattern after EF fumigation in greenhouse should be undertaken. In the previous study, we have established agricultural control concentration of EF to control pests in a greenhouse. EF was fumigated at 5 g m-3 level for 2 h. The concentration of EF inside a greenhouse was analyzed to be 4.1-4.3 g m-3 at 30 min after fumigation. To prepare an analytical method for residues in cucumber crops and soil in the greenhouse, the limit of detection (LOD) of the method was 100 ng g-1 and the limit of quantitation (LOQ) of this method was 300 ng g-1. R2 values of calibration curves for crops and soil were 0.991-0.997. In samples collected immediately after ventilation, EF concentration was determined to be below LOQ level. In addition, EF level was below LOQ in samples collected at 3 h after ventilation except that leaf samples of melon during the flowering period showed a level of 1,068.9 ng g-1. Taken together, these results indicate that EF used in quarantine can be applied to agricultural fields without residual issue as an effective fumigant for insect pest control.