한국원자력환경공단은 처분시설 내 1단계 인수·저장구역의 인수검사 공간 및 드럼 취급 공간 부족에 대한 문제를 해결하기 위하여 방폐물검사건물을 건설하여 저장·처리능력을 확충할 예정이다. 본 연구에서는 MCNP 코드를 이용하여 방폐물검사 건물 내 저장구역에서 취급하는 해체 방사성폐기물 대상 신형처분용기를 대상으로 작업종사자의 피폭선량을 평가하였다. 평가결과, 시설 내 저장 가능한 최대 용기 개수(304개)와 방사선작업에 대한 연간 예상 작업시간(약 306시간)에 대하여 연간 집단선량은 총 84.8 man-mSv로 계산되었다. 시설 내 총 304개의 신형처분용기(소형/중형 타입)가 저장 완료된 시점에서 인수검사, 처분검사를 위한 작업종사자의 투입인력은 총 25명, 작업종사자 당 예상피폭선량은 연평균 3.39 mSv로 산출 되었다. 소형용기 취급 시 작업종사자의 고방사선량 작업에 따른 작업효율과 방사선적 안전성 확보를 위해서는 콘크리트 라이너의 두께를 증가시키는 추가적인 차폐가 필요할 것으로 평가되었다. 향후 본 연구를 바탕으로 실측기반의 해체폐기 물의 선원항과 특성을 활용하여 방사선작업 당 작업시간 및 투입인력을 산출함으로써 작업종사자의 최적의 방사선작업조건을 도출할 수 있을 것으로 사료된다.
During the seven years from 2009 to 2016, PWR SNF (spent nuclear fuel) transportation and storage systems suitable for domestic conditions were developed by the government to cope with the saturation of wet storage capacity in NPPs. One of the developed systems is a multipurpose metal cask applicable for transportation/storage; the other is a concrete cask dedicated to storage. Efficient cask technologies were secured utilizing the characteristics and experience of relevant industrial, academic and research institutes. Technological independence was also achieved through several patent registrations of research outcomes. To prepare for a rapid increase of demand in the near future, technology transfer of secured patents and technologies to the domestic industry was carried out twice in the years of 2016 and 2017. This
한국원자력환경공단에서는 국내 경수로 원전에서 발생된 사용후핵연료를 건식으로 저장할 수 있는 콘크리트 용기를 개발하 였다. 본 저장용기는 사용후핵연료가 건식환경에서 장기간 저장되는 동안 용기 및 사용후핵연료의 건전성이 유지되며, 방사 선량률이 저장시설의 설계기준을 초과하지 않도록 설계되어야 한다. 특히, 저장시설은 정상 및 사고조건에서 적절한 방사선 방호를 위한 차폐설계가 이루어져야 한다. 이를 위해 본 연구에서는 미국 10CFR72 및 10CFR20의 기술기준과 NRC의 표준 심사지침 NUREG-1536에서 제시한 평가방법에 따라 건식저장조건하에서 단일 콘크리트용기 및 2×10 용기배열조건의 선 량율을 평가하였다. 평가결과, 일반인에 대한 연간선량 한도인 0.25 mSv를 만족하는 통제구역 경계까지의 거리는 약 230 m 로 도출되었다. 콘크리트 저장용기의 설계사고는 2×10 배열의 저장시설에서 한 개의 저장용기가 이송 중 전도사고가 발생 하여 용기의 바닥면이 통제구역 경계로 향하는 상황으로 가정하였다. 전도된 저장용기의 바닥면으로 부터 100 m 및 230 m 지점에서 각각 12.81 mSv 및 1.28 mSv로 평가되었다. 본 연구를 통해 건식저장조건에서 콘크리트 저장용기 및 저장시설은 적절하게 평가된 통제구역경계까지의 거리가 확보된다면 방사선적 안전성이 유지됨을 확인할 수 있었다. 본 평가결과만으 로 건식환경의 저장용기(시설) 설계에 직접 적용하기는 어렵겠으나, 향후‘국가 고준위폐기물 관리 전략’에 근거한 원전내 저장시설 또는 중간저장 시설의 설계 및 운영에 유용한 자료가 될 것으로 사료된다.
국내에서 개발중인 콘크리트 저장용기는 방사성 물질의 격납 건전성을 유지하기 위하여 내부에 캐니스터를 포함하고 있다. 본 논문에서는 콘크리트 저장용기 내부 캐니스터의 뚜껑 용접시, 용접시간 저감과 이에 따른 캐니스터 용접부의 구조적 건 전성을 확보하기 위한 방안으로, 정상, 비정상 및 사고조건에서 캐니스터 용접부 균열을 진전시키는 하중에 의해 발생되는 균열 깊이를 분석하여, 용접부의 최대 허용결함깊이를 평가하였다. 정상, 비정상 및 사고조건에서의 구조해석은 범용 유한 요소해석 프로그램인 ABAQUS를 사용하였으며, 허용결함깊이는 ASME B&PV Code Section XI에 따라 막응력과 조합하중 에 대해 평가하였다. 평가결과 콘크리트 저장용기의 캐니스터 용접부의 허용결함깊이는 18.75 mm로 평가되었으며, 이는 NUREG-1536에서 권고하고 있는 임계결함깊이를 만족하고 있는 것으로 나타났다.
본 논문은 국내 원전의 습식저장조에 저장 중인 경수로형 사용후핵연료를 금속겸용용기를 이용해 건식으로 운영하기 위한 운영공정을 개발하는 것이다. 국내 경수로형 원전의 사용후핵연료는 1990년대 초부터 습식으로 소내에서 운반을 한 경험은 많으나 건식으로 운전한 경험은 전혀 없는 실정이다. 이에 따라 금속겸용용기를 운영할 수 있는 세부 운영공정을 개발하 였으며 주요 운영공정에서 금속겸용용기의 주요 구성품 및 사용후핵연료의 안전성이 유지됨을 확인하였다. 단기운영공정은 총 21시간 내에 이루어지도록 절차를 수립하였고 단계별로 허용운전 시간(15시간 습식공정, 3시간 배수공정, 그리고 3시간 진공공정)도 제시하였다.
최근 국내 원전의 경수로 사용후핵연료 습식 저장시설의 포화시점이 다가옴에 따라 운반 및 저장용기를 이용한 건식저장시스템 개발이 활발하게 수행되고 있다. 일반적으로 사용후핵연료 운반 및 저장용기 설계를 위한 차폐해석 시 장전 가능 연료 중 가장 보수적인 연료를 설계기준연료로 선정하여 해석을 수행한다. 그러나 실제 금속 운반용기에 장전되는 사용후핵연료 는 해석평가에 적용된 설계기준연료에 한정되지 않고 다양하기 때문에 초기농축도, 연소도, 최소냉각기간의 특성을 고려한 차폐평가를 통하여 장전가능 여부가 결정된다. 이에 본 연구에서는 금속 겸용용기에 장전 가능한 연료를 대상으로 국내 운반기준을 만족하는 최소냉각기간의 결정을 위한 차폐해석 방법을 기술하였다. 특히 발생량이 많은 초기농축도 3.0~4.5wt% 의 사용후핵연료는 차폐해석 구간을 세분화하여 평가하여 연구결과의 활용에 효율성을 높이고자 하였다. 차폐평가를 통해 2008년까지 국내 원전에서 발생한 장전대상연료 중 약 81%의 사용후 핵연료를 금속겸용용기로 운반할 수 있는것으로 평가 되었다. 본 연구결과를 통해 금속 겸용용기의 운반조건에 장전 가능한 연료의 특성을 제시함으로써 운반 시 운영절차의 개 발을 위한 기술적 근거 수립에 도움이 되고자 한다.
한국원자력환경공단에서는 국내 경수로 원전에서 발생한 사용후핵연료를 건식으로 저장하기 위하여 안전성을 최우선으로 국내/외 기술기준을 준수하여 금속겸용용기를 개발하였다. 이러한 금속용기는 50년 동안 주요 안전성요소(구조, 열제거, 격납, 임계방지, 방사선차폐 등)에 대한 건전성을 유지하고, 운영기간 중 유지보수 과정에 폐기물의 발생을 최소화 하고 이를 안전하게 관리할 수 있도록 설계하였다. 본 논문은 설계수명이 종료된 금속용기 본체 및 내/외부 구조물에 대한 방사화 평가를 통해 정량적인 방사능 재고량에 대한 정보를 제공한다. 본 논문에서는 금속용기 본체 및 구성품의 방사화 방사능 재고량은 MCNP5·ORIGEN-2 평가체계를 이용하여 계산하였으며, 각 구성품의 화학조성, 중성자속 분포, 반응률 및 저장기간 동안 중성자조사 기간을 반영하여 평가하였다. 평가결과, 설계수명 이후 10년 경과시 모든 금속재질에서 60Co의 방사능이 기타 핵종들에 비하여 가장 큰 방사능을 띄는 것으로 나타났으며, 중성자차폐체인 수지에서는 수명직후 28Al 및 24Na등의 고에 너지 감마선을 방출하는 핵종은 반감기가 짧아 0.5년 이후에는 무시할 수 있는 수준으로 나타났다. 또한, 사용후핵연료 제거 후 캐니스터 및 금속용기 본체에 대한 표면 선량률 평가결과, 상당히 낮은 값을 나타내어, 해체 시 작업자가 받는 피폭선량은 무시할 수 있는 수준으로 평가되었다. 본 평가방법은 사용후핵연료 금속겸용용기 해체 시 계획의 수립 및 해체작업 종사자의 피폭선량 예측, 방사성폐기물의 관리/재활용 등의 기본자료로 활용할 수 있을 것으로 사료된다.
국가 주도로 2009년부터 개발중인 경수로 사용후핵연료 건식저장시스템은 금속 겸용용기와 콘크리트 저장용기의 두 가지 방식이다. 국외 건식저장시설 운영 시 주요 격납감시 방안으로는 금속 겸용용기인 경우 이중 뚜껑 사이에 압력센서를 설치 하여 실시간 압력변화를 감시하는 방법이 있고 콘크리트 저장용기의 경우는 캐니스터 기반으로 주요 격납 경계인 뚜껑을 이중으로 용접하는 방식으로 구조물(over pack 또는 module)의 공기 유로인 입구 및 출구에 대한 온도 변화를 감시하는 방 법으로 격납을 관리하는 것으로 나타났다. 미국, 독일 등 30 년 이상 안정적으로 저장시설을 관리한 국가의 다양한 적용기 술 및 운영사례를 조사/분석하여 우리가 개발중인 저장시스템에 적용할 수 있는 격납감시 방안을 도출하는데 활용할 수 있 도록 하였다.
경수로 사용후핵연료 수송/저장용기의 핵임계 해석은 사용후핵연료내의 악티나이드핵종 및 핵분열생성물 함유량에 대한 불확실성을 이유로 신연료로 가정된 가상의 연료를 선정하여 평가해오고 있다. 그러나 이러한 평가방법은 용기 설계 시 과 도한 임계여유도를 유도하여 경제적 손실을 유발할 수 있는 단점이있다. 이와 같은 단점을 극복하기 위하여 최근 연소도이 득효과(burnup credit, BUC)를 반영한 수송저장용기의 설계 및 상용화를 위한 연구가 추진되었다. 이에 본 연구에서는 한국 원자력환경공단에서 개발중인 금속겸용용기를 대상으로 연소도 이득효과적용 시 핵임계 안전성(criticality safety)에 영향을 미칠 것으로 예상되는 ‘노심 운전인자’, ‘축방향 연소도 분포’, ‘오장전 사고상황’에 대하여 핵임계 평가를 수행하였다. 그 결과 노심운전인자 중 저농축, 고연소도일 때 비출력에 따른 핵임계 변화가 크게 평가되었으며, 고연소도 사용후핵연료에서 End effect가 양의 값을 나타내었다. 특히 오장전에 의한 유효증배계수는 최대 0.18467증가하였으므로, 연소도이득효과를 적용 할 경우 필수고려사항임을 확인하였다. 본 연구결과는 국내모델(금속겸용용기)의 연소도 이득효과 적용기술 개발 및 사용 후핵연료 장전 시 일어날 수 있는 오장전 사고를 방지하기 위한 운영절차 개발에 참고자료로 활용될 수 있다.