검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 1

        1.
        2010.04 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Hybridization of semiconductor materials with carbon nanotubes (CNTs) is a recent field of interest in which new nanodevice fabrication and applications are expected. In this work, nanowire type GaAs structures are synthesized on porous single-wall carbon nanotubes (SWCNTs) as templates using the molecular beam epitaxy (MBE) technique. The field emission properties of the as-synthesized products were investigated to suggest their potential applications as cold electron sources, as well. The SWCNT template was synthesized by the arc-discharge method. SWCNT samples were heat-treated at 400˚C under an N2/O2 atmosphere to remove amorphous carbon. After heat treatment, GaAs was grown on the SWCNT template. The growth conditions of the GaAs in the MBE system were set by changing the growth temperatures from 400˚C to 600˚C. The morphology of the GaAs synthesized on the SWCNTs strongly depends on the substrate temperature. Namely, nano-crystalline beads of GaAs are formed on the CNTs under 500˚C, while nanowire structures begin to form on the beads above 600˚C. The crystal qualities of GaAs and SWCNT were examined by X-ray diffraction and Raman spectra. The field emission properties of the synthesized GaAs nanowires were also investigated and a low turn-on field of 2.0 V/μm was achieved. But, the turn-on field was increased in the second and third measurements. It is thought that arsenic atoms were evaporated during the measurement of the field emission.
        4,000원