검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2000.06 KCI 등재 서비스 종료(열람 제한)
        A kinetic study for nitrate removal by anion exchange resin was performed using continuous column reactors. Kinetic approach from the packed bed showed the reaction rate constant k1 was 0.07∼0.17 ℓ/㎎·hr and maximum exchange quantity q0 was 27.75∼31.81 ㎎/g. The results from the continuous column well agreed with that from the batch reactor. An economic analysis of the water treatment plant by anion exchange resin with a regenerating system was performed to design plant and process. Based on the treatment of 20 ㎎/ℓ nitrate-contained wastewater of 10,000 gallons per day to 2 ㎎/ℓ , total capital cost and total annual cost are estimated to be 836 million wons and 211 million wons, respectively.
        2.
        2000.04 KCI 등재 서비스 종료(열람 제한)
        A kinetic study for anion exchange was performed for commercially available Cl- type anion exchange resin in use to remove nitrate in water. The obtained results from the batch reactor were applied to the Langmuir and Freundlich models. The constants for Langmuir model were qmax=29.82 and b=0.202, and for Freundlich model were K=5.509 and n=1.772. Langmuir model showed better fit than Frendlich model for the experimental results. Ion exchange reaction rate was also calculated and the approximate first-order reaction, rate constant k1 was 0.16 L/㎎·hr. Effective diffusion coefficient was obtained in the range from 9.67×10 exp (-8) to 1.67×10 exp (-6) ㎠/sec for initial concentration change, and from 6.09×10 exp (-7) to 3.98×10 exp (-6) ㎠/sec for reaction temperature change. Activation energy during the diffusion was calculated as 36 ㎉/㏖.
        3.
        1998.02 KCI 등재 서비스 종료(열람 제한)
        Ion exchange performance to remove nitrate in water was studied using commercially available strong base anion exchange resin of Cl^- type in the batch and continuous column reactors. The performance was tested using the effluent concentration histories for continuous column or equilibrium concentrations for batch reactor as a function of time until resins were exhausted or reached ionic equilibrium between resin and solution. Anion exchange resin used in this study was more effective than activated carbon or zeolite for nitrate removal. With large resin amount or low initial concentration, nitrate removal characteristics for a typical gel-type resin was increased. On considering the relation between the breakthrough capacity and nitrate concentration of the influent, the use of anion exchange resin were suitable for the higher order water treatment. The nitrate removal of above 90% could be possible until the effluent of above 650 BV was passed to the column. Thus, the commercially available strong base anion exchange resin of Cl^- type used in this study could be effectively used as economic material for treatment of the groundwater. The breakthrough curves showed the sequence of resin selectivity as SO_4^2- > NO_3, > NO^2- > HCO_3^-. The results of this study could be scaled up and used as a design tool for the water purification system of the real groundwater and surface water treatment processes.