본 연구에서는 해양플랜트설비 건조 현장에서 사용되고 있는 기존 고온 오일 플러싱 장비에 대한 성능개선을 위해 기존의 플 러싱 장치에 사용되던 오일에 질소가스를 혼합한 고온 오일 플러싱 시스템에 대하여 국제표준화기구 코드(ISO code)를 기준으로 이론적 연구를 수행하였다. 연구를 위해 오일-질소가스 혼합유체 플러싱 시스템 공정을 설계 후 청정성능에 영향을 주는 혼합유체의 혼합비율, 온도, 레이놀즈수 및 액상분율 등에 대한 공정모사 결과도 분석하였다. 그 결과 관 직경과 가스상의 체적분률이 일정한 상태에서 혼합유 체의 체적유량이 증가될수록 수평 유압배관 입출구의 액상분율 차이 값은 증가하게 되고 배관길이 방향의 위치에 따라 오일과 질 소가스 기포 사이의 상분포가 달라짐을 확인했다. 이러한 상분포의 변화는 오일-질소가스 혼합유체 플러싱 시스템의 청정성능에도 커다 란 영향을 줄 것으로 예상된다.
극저온 액체 상태의 LNG는 주거용과 산업용으로 공급되기 전에 가스 상태로 변환된다. 이러한 재가스화 과정 중에 LNG는 83.7×104 kJ/kg 정도의 많은 냉열에너지를 제공한다. 이 냉열에너지를 일부 선진국들에서는 질소, 수소, 헬륨과 같은 극저온 유체들의 액화, 제빙 및 냉방시스템에 이용하고 있다. 따라서 우리나라에서도 인천, 평택 및 통영 LNG 인수기지 주변에 LNG의 냉열에너지를 이용한 냉열에너지 회수시스템을 설립할 필요가 있다. 여기서는 저열유속상태에서 상변화를 동반하는 LNG의 유동거동 특성을 파악하기 위해 LNG의 85 %를 차지하는 메탄을 작동유체로 사용하였다. 또한 본 논문은 극저온 열교환기 내부를 흐르는 메탄과 질소, 프로판, R11 및 R134a의 유동경계에 영향을 주는 관 직경, 관의 경사각도 및 포화압력의 효과를 보여준다. 또한 여기서 얻어진 이론적 연구결과와 기존의 실험 데이터와도 비교 되었다. 그리고 메탄의 유동경계에 주는 파이프의 경사각도의 영향은 매우 큼을 알 수 있었다.
LNGC 주기관의 크랭크 챔버 내 유증기 폭발 방지를 위해 기존의 이산화탄소 가스인젝터가 부착된 오일미스트 감지기 외에 불활성가스 시스템을 설치할 필요가 있다. 특히, LNGC 선박은 액체질소를 손쉽게 확보할 수 있는 장점이 있기 때문에 액체질소를 이용한 불활성가스 시스템을 도입하기 위한 설계 기초 단계로서 해석적 연구를 시행하였다. 또한 액체질소 최소 소모량 시스템을 개발하기 위하여 층상류 모델을 적용하였으며, 층상류 흐름에 미치는 유로관경, 포화압력과 선박동요에 따른 배관 기울기 등의 영향에 대해서도 조사하였다. 또한 질소와 같은 극저온 유체들과 여기에 사용된 예측 모델과의 비교 검토를 통하여 극저온 유체에 대해서도 모델의 유효성을 검증하였으며, 액체질소 불활성가스 시스템의 액체질소를 가스로 상변환 시키는데 소요되는 가열기의 열부하도 예측할 수 있었다.
가스상의 체적분율과 압력강하는 기액이상류에 대한 이해와 예측에 있어서 매우 중요한 인자이다. 또한 그것들은 산업용 대용량의 열교환시스템 및 선박에 설치되는 보일러 및 냉동시스템의 설계에 있어서 필수적인 항목이다. 따라서 본 논문에서는 파이프의 모든 경사각도에서 기액이상류 가스상의 체적분율과 압력손실을 예측할 수 있는 이론적 해석 방법을 제시한다. 여기서의 이론적 해석은 2유체 층상류 모델을 기초로 하고 있다. 또한 이론적 해석결과와 기존의 실험결과와 비교한 결과에 대해서도 제시한다.
기름과 가스 수송 라인 및 선박 내에 설비된 유체 기계들에 관련된 파이프 내에 층상류 흐름이 존재할 수 있다. 이 때문에 수평 혹은 작은 경사 파이프 내에 발생할 수 있는 층상류 흐름을 예측하기 위한 많은 이론과 상관식이 제시되었다. 기존 연구들은 각 상의 물성, 점성, 밀도 및 파이프의 기하학적 형상 등이 층상류 흐름에 주는 효과에 관한 것이 대부분이고, 중력의 크기 및 파이프의 큰 경사 기울기에 관한 연구성과는 매우 드문 실정이다. 따라서 본 연구에는 중력크기 및 파이프 경사도 변화가 층상류 발생 조건에 미치는 영향에 대해 이론적 연구가 수행되었다. 또한 본 해석을 통하여 0.17g 및 0.33g 조건에서는 비록 수직상향 흐름일지라도 매우 낮은 액체상의 유량조건에서는 층상류 흐름이 존재할 수 있음을 알 수 있었다.