현대에는 개인 연구자 대부분이 지식생산기관에 소속되어 지식생산기관의 유 형과 지식생산기관 간의 협력이 과학 지식생산에 미치는 영향이 높음에도 불구하고, 지식생 산기관이 정확히 식별되지 않아 과학 지식생산 과정을 실증적으로 파악하는 데는 한계가 있 다. 본 연구는 지식생산기관의 식별 정확도를 높이는 방법을 제안하였다. 구체적으로 디지털 헬스 분야의 PubMed 서지정보를 수집한 후 알고리즘을 적용하기 전 데이터 처리 단계에서 ‘맥락적 연결’을 활용하여 기관정보의 불완전성을 해소하고, 알고리즘 적용단계에서는 기관 명 모호성(IND)을 개선하는 방법을 제시하였다. 본 연구가 산출한 ‘지식생산기관 데이터셋’ 과 동일한 서지정보를 대상으로 하는 기존 공개 데이터셋인 ‘PKG datasets’을 비교했을 때, 본 연구가 제시한 방법은 지식생산기관 데이터셋에 포함된 대상 데이터 수를 2배로 증가시켰으며, 국가별 순위도 보다 정확하게 반영하였다. 또한 한국 지식생산기관의 디지털 헬스 분야 기여도가 과소 또는 과대 평가되고 있다는 사실도 발견하였다. 본 연구에서 제시한 방 법은 향후 과학지식을 생산하고 과학 혁신을 달성하는 데 있어 지식생신기관의 역할을 실증 적으로 연구하는 데 기여할 것으로 판단된다.
최근 데이터 기반 경제 활동의 비중이 급증하면서 데이터경제에 대한 논의가 활발하지만 우리나라 주요 산업별 데이터경제로의 전환을 체계적으로 분석하는 틀을 제시하는 연구는 많지 않다. 본 연구는 문헌연구를 통해 데이터경제의 주요 특징을 플랫폼(platform) 구축, 예측력(predictive power) 강화, 새로운 분석모델(new analytical model)의 활용으로 정리하고, 이에 입각하여 우리나라의 금융, 부동산, 의료 부문 간 데이터 기반 활동의 정도를 비교 분석한다. 분석 결과 금융, 부동산, 의료 부문별로 데이터경제 특징이 실현되고 있는 속도와 내용이 다르다는 것이 관찰되었다. 이는 데이터경제의 확산을 통해 경제 생산성 향상과 복지 증대를 위해서는 금융, 부동산, 의료 등 주요 산업 부문별로 차별화된 정책 접근이 필요 하다는 것을 시사한다.