This paper describes a method for tracking attitude and position of underwater robots. Underwater work with underwater robots is subject to differences in work efficiency depending on the skill of the operator and the utilization of additional sensors. Therefore, this study developed an underwater robot that can operate autonomously and maintain a certain attitude when working underwater to reduce difference of work efficiency. The developed underwater robot uses 8 thrusters to control 6 degrees of freedom motion, IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and PS (Pressure Sensor) to measure attitude and position. In addition, the thruster allocation algorithm was designed to follow the control desired value using 8 thrusters, and the motion control experiments were performed in the engineering water basin using the thruster allocation method.
전체 시스템을 최적상태로 유지하기 위한 정보공유의 필연성 등으로 대다수의 제어 시스템이 디지털 제어 시스템으로 대체되고 있다. 이러한 디지털 제어 시스템이 원활하게 운영되기 위해서는 전통적인 점대점 연결방식이 아닌 네트워크를 기반으로 한 시스템이 필수적이며, 이러한 산업용 네트워크를 지능형 항만 물류 시스템에 적용하기 위할 연구가 최근 다양하게 이루어지고 있다. 본 논문에서는 NMEA 2000의 기반이 되는 CAN 프로토콜을 이용한 크레인 시스템의 타당성을 검증하기 위하여 단순화된 네트워크 기반 제어 시스템을 구현하였다.
항만 물류 시스템의 급속한 성장으로 인해 항만의 효율성을 증대하기 위한 자동화 크레인 시스템의 개발이 다양하게 진행 중이다. 자동화크레인은 통신 네트워크를 통하여 각종센서와 액츄에이터를 정밀 제어하게 되는데 이러한 시스템에 장착되는 네트워크 기반 스마트 모 듈은 센서 선호획득 및 필터링 기능, 데이터 연산 및 통신기능이 한 보드상에 구축되어 있어 고장이나 프로토콜이 지원이 다른 모듈을 사용할 경우 모듈 전체를 교체해야 되는 문제점이 발생하게 된다. 본 논문에서는 이러한 문제점을 해결하기 위해서 IEEE 1451 기반의 네트워크 독립적인 스마트 모듈을 제안하고 제안한 스마트 모듈의 성능을 평가하여 크레인 시스템에 적용 가능성을 확인하였다.