This study developed a QSAR regression model using the XGBoost machine learning algorithm to predict the acute aquatic toxicity of highly hazardous PCBs. EC50 values for Daphnia magna were obtained from QSAR Toolbox 4.7. Input features consisted of approximately 3,000 molecular descriptors and fingerprints generated from official structure data using RDKit and the Morgan algorithm, excluding mixtures. The dataset was split into training and test sets (7 : 3) based on 500,000 randomized seeds, and the most balanced combination was selected using Kolmogorov-Smirnov and Wilcoxon rank-sum tests. Z-score standardization was applied based on the training set, and the XGBoost model was trained using 5-fold cross-validation with grid search optimization. The final model showed excellent predictive performance (R2 =0.97, RMSE= 0.19). A simplified model using only the top 10 predictive molecular features retained approximately 95% of the original accuracy while improving interpretability and efficiency. The model was applied to 38 PCB compounds lacking EC50 values, and the predicted values showed a statistically similar distribution to the measured group, with only minor differences in a few structural fingerprints. These results demonstrate the applicability of XGBoost-based models for reliable toxicity prediction and offer a promising alternative approach for assessing the environmental risk of untested PCBs.