Background: Lateral epicondylitis (LE) is the most common chronic musculoskeletal conditions of the upper extremity with pain and wrist extension disability. The tendon which is most affected is the extensor carpi radialis brevis (ECRB). Previous study evaluated the effect of taping technique on patient with LE, but no study investigated the changes of electromyography (EMG) on ECRB when using dynamic taping (DT) technique.
Objects: The aim of this study was to investigate the effect of DT technique using dynamic tape on muscle activity of ECRB during wrist isometric extension, isotonic extension and flexion. Methods: Twenty-one healthy subjects volunteered to participate in this study. Subjects were instructed to perform wrist isometric extension, isotonic extension and flexion without and with DT on origin area of ECRB. Wrist isometric extension was performed at 75%, 50% and 25% (%maximal voluntary contraction force), respectively, based on maximum contraction force. Isotonic extension and flexion test used dumbbell. EMG data was collected from ECRB.
Results: EMG of ECRB were statistically significant decrease in wrist isotonic extension after DT (p < 0.05). Significant increase in wrist isometric extension during 25% and 50% force task (p < 0.05).
Conclusion: This study applied DT technique to suppress the wrist extensor muscles in 21 healthy adults in their twenties. Change in muscle activity was compared in the ECRB muscle during wrist isometric extension, isotonic extension and flexion task. Based on the results of this study, the DT technique applied to the wrist and forearm area can reduce the load on the wrist extensors when the wrist performs various movements during daily life movements or repetitive tasks, and by using these effects, excessive stress is applied to tennis elbow patients.
Background: Lateral epicondylitis (LE) is the most common chronic musculoskeletal pain condition of the upper extremities. LE is often related to forceful grip activities that require isometric contraction of the wrist extensors. A previous study evaluated the effect of the diamond taping technique on grip strength and pain; however, there has been no report on the change in the electromyography (EMG) findings of wrist extensors.
Objects: The aim of this study was to investigate the effect of diamond taping technique, using a rigid tape, on the EMG activities of the extensor carpi radialis (ECR) during grip activities. Methods: Twenty-four healthy subjects (mean age = 21.50 ± 2.76 years) volunteered to participate in this study. The subjects were instructed to perform forceful grip activities with and without diamond-type taping on the origin area of the ECR. Grip strength tests were performed at 100%, 75%, 50%, and 25% for maximal isometric contraction force. EMG data were collected from the ECR. Repeated measure analysis of variance was used to analyze the effect of grip force and taping (with and without). Statistical significance levels were set at α = 0.05. Comparison of the results with and without taping at different grip force were analyzed using independent t-test. Statistical significance levels were set at α = 0.01.
Results: Statistically significant association was observed between the taping application and forceful grip activity as revealed by the EMG data of the ECR (p < 0.05). EMG of the ECR significantly reduced for all muscle strength levels (p < 0.01) after taping.
Conclusion: This study shows an impressive effect of the diamond taping technique, using rigid tape, on wrist extensors during grip activities. Decreasing muscle activity via this taping approach could be utilized to enhance pain-free grip force and reduce pain in patients with LE. Our study suggested that this taping technique could be considered as an effective management strategy of LE.
Background: For performing various movements well, cooperation between the muscles around the scapula and shoulder has been emphasized. Taping has been widely used clinically as a helpful adjunct to other physiotherapy methods for shoulder pathology and dysfunction treatment. Previous studies have evaluated the effect of taping techniques using dynamic tapes on shoulder function and pain. However, no study investigated the electromyographic (EMG) changes in the shoulder muscles.
Objects: This study aimed to investigate the effect of the upper limb offload taping technique using a dynamic tape on EMG activities of the upper trapezius (UT), lower trapezius, serratus anterior (SA), and middle deltoid (MD) muscles during scaption plane elevation.
Methods: A total of 26 healthy subjects (19.85 ± 6.40 years, male = 20) volunteered to participate in this study. The subjects were instructed to perform scaption elevation with and without dynamic taping on the shoulder. Shoulder elevation strength tests were performed at 100%, 75%, 50%, and 25%, for the maximal isometric contraction force.
Results: There were statistically significant interaction effects between the taping application and shoulder scaption elevation force in EMG activities in the UT (p < 0.05) and MD (p < 0.05). EMG activities in the UT showed significant increases in 50%RVC (reference voluntary contraction, p < 0.05) and 25%RVC (p < 0.01). Furthermore, the EMG activity of the SA significantly increased in 50%RVC (p < 0.01) and 25%RVC (p < 0.01) after dynamic taping. For the MD, the EMG activity level significantly decreased in 100%RVC (p < 0.05).
Conclusion: These results indicated that upper limb offload dynamic taping application affects the muscle activities of some shoulder muscles depending on different scaption elevation strength levels. Therefore, we suggest that the upper limb offload dynamic taping can be applied to the shoulders when patients need middle deltoid inhibition or upper trapezius facilitation, such as patients with shoulder impingement syndrome.
Background: Lumbopelvic stability is highly important for exercise therapy for patients with low back pain and shoulder dysfunction. It can be attained using a pelvic compression belt. Previous studies showed that external pelvic compression (EPC) enhances form closure by reducing sacroiliac joint laxity and selectively strengthens force closure and motor control by reducing the compensatory activity of the stabilizer. In addition, when the pelvic compression belt was placed directly on the anterior superior iliac spine, the laxity of the sacroiliac cephalic joint could be significantly reduced.
Objects: This study aimed to compare the effects of EPC on lumbopelvic and shoulder muscle surface electromyography (EMG) activities during push-up plus (PUP) and deadlift (DL) exercise, trunk extensor strength during DL exercise.
Methods: Thirty-eight subjects (21 men and 17 women) volunteered to participate in this study. The subjects were instructed to perform PUP and DL with and without the EPC. EMG data were collect from serratus anterior (SA), pectoralis major (PM), erector spinae (ES), and multifidus (MF). Trunk extensor strength were tested in DL exercise. The data were collected during 3 repetitions of all exercise and the mean of root mean square was used for analysis.
Results: The EMG activities of the SA and PM were significantly increased in PUP with pelvic compression as compared with PUP without pelvic compression (p<.05). In DL exercise, a significant improvement in trunk extensor strength was observed during DL exercise with pelvic compression (p<.05).
Conclusion: The results of this study indicate that lumbopelvic stabilization reinforced with external pelvic compression may be propitious to strengthen PUP in more-active SA and PM muscles. Applying EPC can improve the trunk extensor strength during DL exercise. Our study shows that EPC was beneficial to improve the PUP and DL exercise efficiency.