Potassium hydroxide-activated carbons (CK21, CK11, and CK12) were prepared from pis-tachio nutshells. Physicochemical properties of activated carbons were characterized by TGA, pHpzc, Fourier transform infrared spectroscopy, scanning electron microscopy, and N2-adsorption at -196°C. The examinations showed that activated carbons have high sur-face area ranging between 695-1218 m2/g, total pore volume ranging between 0.527-0.772 mL/g, and a pore radius around 1.4 nm. The presence of acidic and basic surface C-O groups was confirmed.Batch adsorption experiments were carried out to study the effects of adsorbent dosage, temperature, initial concentration of adsorbate, and contact time on deltamethrin adsorption by activated carbons. The kinetic studies showed that the adsorp-tion data followed a pseudo-second order kinetic model. The Langmuir model showed a maximum adsorption capacity of 162.6 mg/g at 35°C on CK12. Thermodynamic studies indicated that adsorption was spontaneous and increased with temperature, suggesting an endothermic process.
Physically and chemically activated carbons (ACs) exhibited high adsorption capacities for organic and inorganic pollutants compared with other adsorbents due to their expanded sur-face areas and wide pore volume distribution. In this work, seven steam-ACs with different burn-off have been prepared from cotton stalks. The textural properties of these sorbents were determined using nitrogen adsorption at -196°C .The chemistry of the surface of the present sorbents was characterized by determining the surface functional C-O groups using Fourier transform infrared spectroscopy, surface pH, pHpzc, and Boehm’s acid-base neutral-ization method. The textural properties and the morphology of the sorbent surface depend on the percentage of burn-off. The surface acidity and surface basicity are related to the burn-off percentage. A theoretical model was developed to finda mathematical expression that relates the % burn-off to ash content, surface area, and mean pore radius. Also, the chemistry of the carbon surface is related to the % burn-off. A mathematical expression was proposed where % burn-off was taken as an independent factor and the other variable as a dependent factor. This expression allows the choice of the value of % burn-off with required steam-AC properties.
Dye removal from waste water via adsorption by activated carbons (ACs) developed from agricultural wastes represents an ideal alternative to other expensive treatment options. Physical and chemical ACs were prepared from rice husks. The textural properties of the ACs were characterized by Brunauer-Emmett-Teller-N2 adsorption and scanning electron microscopy. The chemistry of the carbon surface was investigated by Fourier transform infrared spectroscopy, base and acid neutralization capacities, pH of the active carbon slurry, and pHpzc. The adsorption capacities of the ACs for the basic dye (methylene blue) and acid dye (acid green 25) were determined using parameters such as contact time, pH, and temperature. NaOH-ACs showed the highest surface area and total pore volume, whereas steam-ACs showed the lowest ones.
Chemically activated carbons were prepared from maize cobs, using phosphoric acid of variable concentration. The texturalparameters of the activated carbons were determined from the nitrogen adsorption isotherms measured at 77K. The chemistryof the carbon surface was determined by measuring the surface pH, the pHPZC and the concentration of the carbon - oxygengroups of the acid type on the carbon surface. Kinetics of Cr(VI) sorption/reduction was investigated at 303K. Two processeswere investigated in terms of kinetics and equilibrium namely; Cr(VI) removal and chromium sorption were studied at variousinitial pH (1-7). Removal of Cr(VI) shows a maximum at pH 2.5. At pH<2.5, sorption decreases because of the protoncompetition with evolved Cr(III) for ion exchange sites. The decrease of sorption at pH>2.5 is due to proton insufficiencyand to the decrease of the extent of Cr(VI) reduction. The chemistry of the surface of activated carbon is an important factorin determining its adsorption capacity from aqueous solutions particularly when the sorption process involves ion exchange.
Oxidized activated carbons were prepared by reacting steam-activated carbon developed from pecan shells with nitric acid of varying strength (15, 30, 45 and 60%). The textural properties and the chemistry of the surface of the non-oxidized and of the oxidized carbons were determined from nitrogen adsorption and base neutralization capacities. The uptake of Pb(II) and Cd(II) from aqueous solution by these carbons was determined by kinetic and equilibrium experiments as well as by the column method. Treatment with nitric acid brought about drastic decrease in surface area and remarkable increase in the pore size of the carbon with these changes depending on the strength of nitric acid. Nitric acid increased the surface acidity by developing new surface oxygen functional groups of acidic nature. HNO3-oxidized carbons exhibited high adsorption capacities for Pb(II) and Cd(II). The adsorption of these ions increased with the decrease of the surface pH of the carbon and with the increase of the solution pH from 2.5 to 6 and 7. The amount adsorbed from lead and cadmium was also related to the amount of surface acidity, the pH of the point of zero charge and on some metal ion parameters. Cadmium and lead uptake by the investigated carbons followed pseudo-second order model and the equilibrium sorption data fitted Langmuir adsorption model.
Four stream- activated carbons were prepared by carbonizing apricot stones at 600℃ followed by gasification with steam at 950℃ to burn-off's=17, 32, 49 and 65%. The textural parameters of these activated carbons were determined from nitrogen adsorption results at 77 K. The total pore volume and the mean pore radius increased with the increase of % burn-off whereas the surface area increased with the increase of burn- off from 17 to 32 and further to 49%. Further increase of burn-off to 65% was associated with a considerable decrease in surface area as a result of pronounced pore widening due to pore erosion. The surface pH values of the carbons investigated range between 7.1 and 8.2. The adsorption of oxamyl onto the activated carbon followed pseudo-second order kinetics and the equilibrium adsorption isotherms fitted Langmuir adsorption model. The adsorption of oxamyl proved to be of the physical type and took place in non-micropores. The amount of oxamyl adsorbed expressed as qm depends to a large extent to the surface area located in non-micropores S∝ n, where a straight line relationship passing through the origin was obtained.
A carbonaceous sorbent was prepared from rice husk via sulphuric acid treatment. After preparation and washing, the wet carbon with moisture content 85% was used in its wet status in this study due to its higher reactivity towards Cr(VI) than the dry carbon. The interaction of Cr(VI) and the carbon was studied and two processes were investigated in terms of kinetics and equilibrium namely Cr(VI) removal and chromium sorption. Cr(VI) removal and chromium sorption were studied at various initial pH (1.6-7), for initial Cr(VI) concentration (100 mg/l). At equilibrium, maximum Cr(VI) removal occurred at low initial pH (1.6-2) where, Cr(III) was the only available chromium species in solution. Cr(VI) removal, at such low pH, was related to the reduction to Cr(III). Maximum chromium sorption (60.5 mg/g) occurred at initial pH 2.8 and a rise in the final pH was recorded for all initial pH studied. For the kinetic experiments, approximate equilibrium was reached in 60-100 hr. Cr(VI) removal data, at initial pH 1.6-2.4, fit well pseudo first order model but did not fit pseudo second order model. At initial pH 2.6-7, Cr(VI) removal data did not fit, anymore, pseudo first order model, but fit well pseudo second order model instead. The change in the order of Cr(VI) removal process takes place in the pH range 2.4-2.6 under the experimental conditions. Other two models were tested for the kinetics of chromium sorption with the data fitting well pseudo second order model in the whole range of pH. An increase in cation exchange capacity, sorbent acidity and base neutralization capacity was recorded for the carbon sorbent after the interaction with acidified Cr(VI) indicating the oxidation processes on the carbon surface accompanying Cr(VI) reduction.
Activated carbons were obtained by activating wild cherry stones with different concentrations of phosphoric acid or zinc chloride at different temperatures. The adsorption of N2 at 77 K and of CO2 at 273 K was followed and the data were analyzes by considering different adsorption models. The activated carbons obtained measured high surface area with the most of the surface in all samples located in micropores. Fair agreement was found between the nitrogen surface areas calculated from the BET-, t-, α- and DR- methods, although the first three are based on surface coverage whereas the latter is based on micropore filling. The carbon dioxide surface areas calculated by the DA equation were smaller than the comparable nitrogen areas. This was ascribed to domination of surface coverage mechanism, the absence of activated diffusion process. Based on this explanation the CO2-surface areas as calculated by DA equation should be taken with great reservation.
The activated carbon "C" was obtained by carbonization followed by activation with steam at 40% of burn-off. Oxidized carbons C-N, C-P and C-H were obtained by oxidizing the activated carbon C with concentrated nitric acid, ammonium peroxysulfate and hydrogen peroxide, respectively. The textural properties of the carbons were determined from nitrogen adsorption at 77 K. The acidic surface functional groups were determined by pH titration, base neutralization capacity and electrophoretic mobility measurements. The cation exchange capacities of un-oxidized and oxidized carbons were determined by the removal of Cu(II) and Ni(II) from their aqueous solutions. The surface area and the total pore volume decreased but the pore radius increased by the treatment of activated carbon with oxidizing agents. These changes were more pronounced in case of oxidation with HNO3. The surface pH of un-oxidized carbon was basic whereas those of the oxidized derivative were acidic. The removal of Cu(II) and Ni(II) was pH dependent and the maximum removal of the both ions was obtained at pH of 5-6. Cu(II) was more adsorbed, a phenomenon which was ascribed to its particular electronic configuration.
Carbonization products C1, C2, C3, C4 and C5 were prepared by the carbonization of date pit in limited air, at 500, 600, 700, 800 and 1000℃, respectively. C1-V-600, C3-V-600, C1-V-1000 and C3-V-1000 were prepared by thermal treatment of C1 and C3 under vacuum at 600 and 1000℃. The textural properties were determined from nitrogen adsorption at 77 K and from carbon dioxide adsorption at 298 K. The surface pH, the FTIR spectra and the acid and base neutralization capacities of some carbons were investigated. The amounts of surface oxygen were determined by out-gassing the carbon-oxygen groups on the surface as CO2 and CO. The adsorption of water vapor at 308 K on C1, C2, C3 and C4 was measured and the decomposition of H2O2 at 308 K was also investigated on C1, C2, C3, C4 and C5. The surface area and the total pore volume decreased with the rise of the carbonization temperature from 500 to 1000℃. The adsorption of water vapor is independent on the textural properties, while it is related to the amount of acidic carbon-oxygen groups on the surface. The catalytic activity of H2O2 decomposition does not depend on the textural properties, but directly related to the amount of basic carbon-oxygen complexes out-gassed as CO, at high temperatures.