With the development of mechatronics technology in the transporter industry, the electric power assisted steering (EPAS) system has many advantages compared to the hydraulic system. Many manufacturers are developing and applying EPAS systems to improve the performance of the transporter. Using the HILS system developed in the paper, an adaptable EPAS system was developed for real transporter. It was installed in a real, KIA Rio, and tested. Results indicated outstanding performance. Therefore, the developed EPAS can be applied via HILS system.
The localization of vehicle is an important part of an unmanned vehicle control problem. Pseudolite ultrasonic system(PUS) is the method to find an absolute position with a high accuracy by using ultrasonic sensor. And Gyro is the inertial sensor to measure yaw angle of vehicle. PUS can be able to estimate the position of mobile robot precisely, in which errors are not accumulated. And Gyro is a more faster measure method than PUS. In this paper, we suggest a more accuracy method of calculating PUS which is numerical analysis approach named Newtonian method. And also propose the fusion method to increase the accuracy of estimated angle on moving vehicle by using PUS and Gyro integrated system by Kalman filtering. To control the 4WS unmanned vehicle, the trajectory following algorithm is suggested. And the new concept arbitration of goal controller is suggested. This method considers the desirability function of vehicle state. Finally, the performances of Newtonian method and designed controller were verified from the experimental results with the 4WS vehicle scaled 1/10.
Path planing method for an autonomous mobile robot is considered. For the practical applications, the simplified local potential field methods are applied under the constraints of the driving condition. To improve the performance, the fuzzy-approximated linear function method is also used.