검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2002.12 서비스 종료(열람 제한)
        The soybean cyst nematode (Heterodera glycines Inchinoe; SCN) is a devastating pest of soybean and is responsible for significant losses in yield. The use of resistant cultivars is the effective method to reduce or eliminate SCN damage. The objective of this research is to identify AFLP markers linked to the SCN resistant genes. Bulked genomic DNA was made from resistant and susceptible genotypes to SCN and a total of 19 primer combinations were used. About 31 fragments were detected per primer combination. The banding patterns were readily distinguished in resistant and susceptible bulked genotypes. Polymorphic fragments were detected between resistant and susceptible bulked genotypes in the primer combination of CGT/GGC, CAG/GTG and CTC/GAG. In primer combinations of CGT/GGC and CAG/GTG, bulked resistant genotype produced a polymorphic bands. However, in primer of CTC/GAG, bulked susceptible genotype produced a polymorphic fragments. Three AFLP markers identified as a polymorphic fragments between bulked genomic DNA were mapped in 85 F2 population. Among them, only two markers, CGT/GGC and CTC/GAG, was linked and was mapped. Broad application of AFLP marker would be possible for improving resistant cultivars to SCN.
        2.
        2002.09 KCI 등재 서비스 종료(열람 제한)
        Soybean cyst nematode (Heterodera glycines Ichinohe; SCN) is an important soybean pest and the use of resistant cultivars is the effective method to reduce or eliminate SCN damage. However, breeding for SCN resistance is difficult and expensive by the oligogenic nature of the resistance and genetic variability in the pathogen. Fortunately, SCN resistance loci, rhg1 and Rhg4 are generally accepted as a necessity for the development of resistant genotypes using any source of resistance. In this study, resistance of 44 Korean soybean cultivars to SCN was tested using two molecular markers. Seonheukkong and Pokwangkong were the homozygous to rhg1 locus. Seven cultivars were susceptible to SCN based on Satt309 marker linked rhg1 locus. All Korean cultivars estimated in this study were recessive homozygous to Rhg4 locus and were susceptible in the PCR reaction using primer 548/563 linked to the Rhg4 locus conferring resistance to SCN race 3. Among 44 cultivars estimated, seven cultivars were susceptible to SCN in both Satt309 and primer 548/563 markers. Based on both Satt309 and primer 548/563 markers, there is no resistant cultivar to SCN in Korea. Therefore, SCN resistant cultivars need to be developed in the future. These two markers can be used for improving SCN resistant cultivars.
        3.
        2000.12 서비스 종료(열람 제한)
        Soybean [Glycine max (L.) Merr.] seed weight is a important trait in cultivar development. Objective of this study was to identify and confirm quantitative trait loci (QTLs) for seed weight variation in the F2 and F2:3 generations. QTLs for seed weight were identified in F2 and F2:3 generations using interval mapping (MapMaker/QTL) and single-factor analysis of variance (ANOVA). In the F2 plant generation (i.e., F3 seed), three markers, OPL9a, OPM7a, and OPAC12 were significantly (P<0.01) associated with seed weight QTLs. In the F2:3 plant row generation (i.e., F4 seed), five markers, OPA9a, OPG19, OPL9b, OPP11, and Sat_085 were significantly (P<0.01) associated with seed weight QTLs. Two markers, OPL9a and OPL9b were significantly (P<0.05) associated with seed weight QTLs in both generations. Two QTLs on USDA soybean linkage group C1 and R were identified in both F2 and F2:3 generations using interval mapping. The linkage group C1 QTL explained 16% of the variation in seed weight in both generations, and the linkage group R QTL explained 39% and 41% of the variation for F2 and F2:3 generation, respectively. The linkage group C2 QTL identified in F2:3 generation explained 14.9% of variation. Linkage groups C1, C2 and R had previously been identified as harbouring seed size QTLs. The consistency of QTLs across generations and populations indicates that marker-assisted selection is possible in a soybean breeding program.
        4.
        1999.06 서비스 종료(열람 제한)
        Molecular markers are useful to confirm the hybridity of F1 plant derived from cross of two homozygous parents with similar morphological traits. RAPD markers were used to test F1 hybrid plant obtained from cross of two homozygous soybean (Glycine max) parents. Fl plant for cross I was made from the mating of Hobbit87 (female) and L63-1889 (male) and Fl plant for cross II was obtained from the mating of H1053 (female) and L63-1889 (male). Selfing plant per each cross was also obtained. Among 20 Operon primers used, OPA04 and OPA09 show polymorphism between cross I and II parent. Band in size 1Kb of OPA04 and 2.1Kb of OPA09 primer was polymorphic band. This fragment identified Fl hybrid plant and selfing plant in cross I and II. Female parent Hobbit87 in cross I and H1053 in cross II has no this fragment (recessive allele). However, male parent L63-1889 and Fl hybrid plant in cross I and II has this size of polymorphic band (dominant allele). This indicated that Fl hybrid and selfing plants were detected by RAPD marker before phenotypic marker would be used to identify Fl hybridity. Amplification products of selfing plant for cross I and II were completely same to the those of female parent. When mature, flower color of Fl hybrid plant in cross I and II was purple and flower color of selfing plant in cross I and II was white. Purple flower is dominant trait. Fl hybridity was successfully detected at very early growth stage using RAPD marker. Therefore, RAPD marker can be used broadly to confirm Fl hybridity in many crops.