검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2014.07 서비스 종료(열람 제한)
        In order to select a rice population with useful trait such as arsenic tolerance for crop improvement, we have developed 3000 M7 Targeting Induced Local Lesions IN Genomes (TILLING) lines by gamma ray (GR) irradiation treatment to a rice variety (cv. Donganbyeo). A total of 2 M7 lines exhibited the arsenic (AsV) tolerant phenotype (hereafter, named Arsenic Tolerant TILLING line 1 and 2, and designed as ATT1 and 2), in which the shoots and roots length of ATT lines were significantly longer than those of wild type (WT) during As(V) treatment. To survey the DNA polymorphism of these plants, we conducted the Whole genome resequencing with 10x coverage in ATT lines. By comparative analysis among ATT lines, we have identified the common DNA polymorphism such as 11,817 SNPs (49.83% in ATT1 and 48.35% in ATT2) and 30,618 InDels (86.72% in ATT1 and 86.23% in ATT2). Also, these mutants were showed the close relationships more than WT. To further study the changed amino acids of genes, we commonly identified the 758 genes for non-synonymous SNPs and 249 genes for changed codon InDels. These genes were mainly exhibited the enriched GO functions such as catalytic activity, nucleic acid binding and transferring phosphorus-containing groups. To determine the genes associated with arsenic-related mechanism in DNA polymorphism of ATT lines, we have retrieved the two structurally altered genes (Os11g47870 and Os03g19900) for metalloid As(V) detoxification toward induced genes in response to arsenic treatments by public microarray datasets. We suggest that As(V) tolerant phenotypes of ATT lines are certainly affected by structurally altered genes associated with phosphorus transferring and As(V) detoxification during GR treatment
        2.
        2013.07 서비스 종료(열람 제한)
        In order to better understand the biological systems that are affected in response to cosmic ray, we conducted the weighted gene co-expression network analysis with module detection method. By using the Pearson’s correlation coefficient value, we were evaluated the complex gene-gene functional interactions between 680 CR-response probes from integrated microarray datasets, which included large-scale transcriptional profiling of 918 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched function such as oxidoreductase activity, response to stimulus and stress, and hydrolase activity. Especially, module 1 and 2 commonly showed the enriched annotation categories such as oxidoreductase activity, including the enriched cis-regulatory elements known as ROS specific regulator. These results suggest in module1 and 2 that ROS-mediated irradiation response pathway are affected by CR. We found the 243 irradiation-dependent probes, which were exhibited the similarities of differentially expressed patterns in various irradiation microarray datasets, and RT-PCR for confirmations of several irradiation-dependent genes were exhibited the similar expressed patterns in rice by CR, gamma ray and Ion beam treatments. Interestingly, these genes were differentially expressed by non-gravity. Moreover, we were identified the co-regulations between several irradiation-dependent genes and functional interacted genes in the CR-responsive network by various GA treatments such as different conditions of dose and treatment time. These results of network-based analysis might provide a clue to understanding the complex biological system of CR.