검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bacterial phytopathogen Pectobacterium causes soft rot disease in several vegetable crops globally, resulting in heavy agricultural losses at both the pre and postharvest stages. The present work was carried out to screen Kimchi cabbage genetic resources conserved at the National Agrobiodiversity Center, Rural Development Administration, Korea, for resistance against the soft rot pathogen Pectobacterium carotovorum subsp. carotovorum KACC 21701 over a period of three years (from 2020 to 2022). Infection of the phytopathogen was carried out at four-leaf stage and for each accession, twenty-five plants per germplasm were infected with KACC 21701. Kimchi cabbage cultivars Wangmatbaechu, Seoulbaechu, and CR Kiyoshi were used as control. Seven-days post-infection, the Disease Index (DI) values were manually recorded from zero to four, zero matched perfectly heathy plants and four completely dead plants. The 682 accessions of Kimchi cabbage exhibited varying degrees of disease resistance to KACC 21701 and thirty accessions, exhibiting a DI≤2, were considered for replication studies. During the replication studies, four landrace germplasms (IT102883, IT120036, IT120044, and IT120048) and one cultivar (IT187919) were confirmed to be moderately susceptible to KACC 21701. Results of the preliminary screening as well as replication studies were documented for the all the 682 germplasms. Addition of such information to the passport data of stored germplasms might serve as potential bio-resource for future breeders and researchers to develop resistant varieties or study the mechanisms involved in resistance of plants to such phytopathogen.
        4,000원
        2.
        2019.12 KCI 등재 서비스 종료(열람 제한)
        Sclerotinia rot, caused by Sclerotinia sclerotiorum, is a devastating disease that poses a serious threat to perilla production in Korea. Identifying effective sources of resistance offers long term prospects for improving management of this disease. Screening disease resistant genetic resources is important for development of disease-resistant, new cultivars and conduct related research. In the present study, perilla germplasm were screened in vitro against S. sclerotiorum using detached leaf method. Among 544 perilla accessions, two were highly resistant (IT226504, IT226533), five were resistant (IT226561, IT226532, IT226526, IT226441, and IT226589), five were moderately resistant (IT226525, IT226640, IT226568, IT220624, and IT178655), 16 were moderately susceptible, 31 were susceptible, and 485 were highly susceptible. The resistant accessions in this study could serve as resistance donor in the breeding of Sclerotinia rot resistance or subjected to selection procedure of varietal development for direct use by breeders, farmers, researchers, and end consumers.