검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 58

        3.
        2023.10 구독 인증기관·개인회원 무료
        4.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Technosignature, previously known as SETI(search for extraterrestrial intelligence), is the scienti c evidence of past or present extraterrestrial civilizations. Since NRAO's Project Ozma was performed in 1960, most of the noticeable technosignature searches have been done by radio telescopes, hoping to find strong and narrow bandwidth signals that cannot be explained by known natural processes. Recently, the Breakthrough Listen project has opened a new opportunity for technosignature by utilizing both optical telescopes, radio telescopes, and next-generation radio telescope arrays. In this review, mainly based on NASA Technosignatures Workshop (2018), we review the current trends of technosignature surveys, as well as other possible methods for detecting technosignature. Also, we suggest what the Korean community could contribute the technosignature research, including the new SETI project with Korea VLBI Network (KVN).
        4,800원
        5.
        2023.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Since the farside of the moon is a place to avoid arti cial radio frequency interference (RFI) created byhuman civilization, it is a most suitable place for searching technosignature, which are signs of technolog-ical civilization in the universe, in the radio band. The RFI is a factor that makes the study of searchingtechnosignature quite complicated because it is di cult to distinguish between technological signals pro-duced by human and extraterrestrial civilizations. In this paper, we review why the farside of the moon isthe best place to detect technosignature and also introduce radio observatories on the farside of the moonthat have been proposed in radio astronomy. The SETI (Search for Extraterrestrial Intelligence) projecton the farside of the moon is expected to be one of the main candidates for international collaborationresearch topics on lunar surface observatory.
        4,800원
        6.
        2023.07 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The main goal of the Korean VLBI Network Calibrator Survey (KVNCS) is to expand the VLBI calibrators catalog for KVN, KaVA(KVN and VERA Array), EAVN(East-Asian VLBINetwork), and other extended regions. The secondKVNCS (KVNCS2) aimed to detect VLBI fringes of new candidates for calibrators in the K band. Out of the 1533 sources whose single-dish flux density in the K band was measured with KVN telescopes (Lee et al. 2017), 556 sources were observed with KVN in the K band. KVNCS2 confirmed the detection of VLBI fringes of 424 calibrator candidates over a single baseline. All detected sources had a high Signal-to-Noise Ratio (SNR) of >25. Finally, KVNCS2 confirmed 347 new candidates as VLBI calibrators in the K band, resulting in a 5% increase in the sky coverage compared to previous studies. The spatial distribution was quasi-uniform across the observable region (Dec. > −32.5◦). In addition, the possibility as calibrator candidates for the detected sources was checked, using an analysis of the flux-flux relationship. Ultimately, the KVNCS catalog will not only become the VLBI calibrator list but is also useful as a database of compact radio sources for astronomical studies.
        4,000원
        9.
        2023.04 구독 인증기관·개인회원 무료
        14.
        2019.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The KVN(Korean VLBI Network)-style simultaneous multi-frequency receiving mode is demonstrated to be promising for mm-VLBI observations. Recently, other Very long baseline interferometry (VLBI) facilities all over the globe start to implement compatible optics systems. Simultaneous dual/multi-frequency VLBI observations at mm wavelengths with international baselines are thus possible. In this paper, we present the results from the first successful simultaneous 22/43 GHz dualfrequency observation with KaVA(KVN and VERA array), including images and astrometric results. Our analysis shows that the newly implemented simultaneous receiving system has brought a significant extension of the coherence time of the 43 GHz visibility phases along the international baselines. The astrometric results obtained with KaVA are consistent with those obtained with the independent analysis of the KVN data. Our results thus confirm the good performance of the simultaneous receiving systems for the non-KVN stations. Future simultaneous observations with more global stations bring even higher sensitivity and micro-arcsecond level astrometric measurements of the targets.
        4,000원
        17.
        2017.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We investigate the radio properties of the dwarf galaxy SDSS J133245.62+263449.3 which shows optical signatures of black hole activity. Dwarf galaxies are known to host intermediate mass black holes (IMBHs) with masses MBH ∼ 10 4-6 M⊙, some of them being radio loud. Recently, Reines et al. (2013) found dwarf galaxy candidates which show signatures of being black hole hosts based on optical spectral lines. SDSS J133245.62+263449.3 is one of them; it shows a flux density of ∼ 20 mJy at 1.4 GHz, which corresponds to L 1.4GHz ∼ 10 23 WHz -1. This is much brighter than other black hole host dwarf galaxies. However, star formation activity can contribute to radio continuum emission as well. To understand the nature of the radio emission from SDSS J133245.62 + 263449.3, we imaged this radio loud dwarf galaxy at low frequencies (325 MHz and 610 MHz) using the Giant Metrewave Radio Telescope (GMRT). We present here the high resolution images from our GMRT observations. While we detect no obvious extended emission from radio jets from the central AGN, we do find the emission to be moderately extended and unlikely to be dominated by disk star formation. VLBI observations using the Korean VLBI Network (KVN) are now being planned to understand the emission morphology and radiation mechanism.
        4,000원
        1 2 3