This study explored the changes in senescence patterns and vase life of cut roses grown in summer and autumn, aiming to identify the relationship between harvest seasons and flower longevity. We analyzed gene expression profiles associated with lignin, pectin, ethylene, auxin, and sucrose transport to understand the molecular mechanisms underlying senescence symptoms, such as the bent neck, petal abscission, and petal wilting in cut rose flowers. Our results revealed season-dependent occurrences of bent neck and petal abscission, with higher incidence rates in autumn-harvested rose flowers. These increases in bent neck and petal abscission contributed to a shortened vase life for the cut flowers. Gene expression analysis indicated that elevated levels of ethylene biosynthesis genes and reduced expression of lignin, pectin biosynthesis, auxin response factor, and sucrose transport genes accelerated the increased senescence symptoms. Notably, the incidence rates of the bent neck were highly negatively correlated with the transcript levels of key genes involved in lignin and pectin biosynthesis, RhPRXPX and RhGAUT1, in pedicels. These findings contribute to our understanding of the molecular factors influencing the mechanical strength of flower pedicels and provide insights for postharvest strategies to enhance the ornamental value of cut flowers across seasons.
The effects of light intensity and external sucrose on the vase life of cut roses were estimated by monitoring the net photosynthesis and chlorophyll fluorescence. Cut flowers were held under different light intensities 10 (L10) or 50 (L50) μmol‧m-2‧s-1 with or without treatment with external sucrose. We found substantial differences in stomatal conductance, photosynthesis rate, photosystem II (PSII) quantum efficiencies, specific fluxes, and vase life of the cut flowers when exposed to different light intensities. Light intensity at 50 μmol‧m-2‧s-1 increased photosynthesis capacity, thus delaying petal senescence and extending the vase life of cut flowers. L50 flowers maintained a high photosynthetic rate by reducing heat dissipation (DI0/RC) and increasing electron transport (ET0/TR0 and ET0/ABS) in the electron transport chain of the photosynthesis apparatus. The application of external sucrose extended the vase life of cut flowers by improving water balance and sustaining turgor pressure in the petals of the cut flowers. The net rate of photosynthesis of the cut flowers was increased by higher light intensity; however, it was not affected by the application of external sucrose. Our results indicate that the application of external sucrose is necessary to improve the longevity of cut flowers when endogenous sucrose production by photosynthesis is insufficient under low light conditions during the postharvest period. In addition, our results revealed that most of the photosynthetic parameters were significantly correlated with the vase life of cut rose flowers. Moreover, the relation between the rate of photosynthesis and chlorophyll fluorescence parameters indicates that the rise from the basic dark-adapted fluorescence yield to the maximum (OJIP transient) method can be used as a tool for the evaluation and prediction of the photosynthesis rate in cut flowers.
Gray mold is caused by the fungal pathogen Botrytis cinerea (B. cinerea), a commercially damaging disease of rose flowers. The infection of this necrotrophic fungal pathogen is one of the most important reason that rose flower is rejected by consumers and importers, leading to economic losses. The gray mold disease influences rose flowers through cultivation and distribution in the greenhouse, storage, transport, and market. Environmental conditions and genetic factors are two primary factors that affect the development of gray mold in the flowers during pre- and postharvest stages. However, the interaction between B. cinerea and rose flowers at the molecular level has not been well studied to date. Despite the multiple studies conducted over the past decades, breeding flowers that have resistance to B. cinerea has not been successful in roses. Furthermore, the mechanism underlying tolerance to gray mold is under-investigated and poorly understood in roses. The most popular current control strategies against B. cinerea in roses are pre- and postharvest fungicides, but they are generally expensive, ineffective, and polluted. In this review, we summarized the nature of B. cinerea in plants and discussed the current control strategies of gray mold disease in rose flowers, such as radiation, resistance inducer, chemical and biological control. In addition, we propose an approach for reducing B. cinerea infection in rose flowers by using ethylene antagonists.
Lodging in the direct seeded rice cultivation on flooded paddy is being severe problem due to the lower production and grain quality at ripening stage. This study was conducted to examine the effect of Iprobenfos-metconazole (IPM) treated 50, 40 and 30 days before heading respectively as a plant regulator to reduce the lodging at ripening stage of direct seeding rice cultivation. The culm length treated with IPM, especially the 4th culm internode, was shortened more than with untreated plot, and the most effective time was at 30 days before heading. At 20 days after heading the flag leaves colour showed more greening than in the untreated leaves and the plot with IPM treatment was to be maintained longer compared to the control plot. The Nitrogen concentration of leaves with IPM was lower than in the control plot, and SiO2 contents were higher than in the untreated plot and SiO2/N ratio was increased more in the IPM plot than in the control plot. The breaking strength of 3rd and 4th culm internode with IPM treatment was higher than in the untreated plot, and the lodging index was reduced in the IPM plot significantly and the field lodging also was reduced. As the results the rice production in the IPM plot was increased more due to be higher ripening ratio and seed grain weight compared to the untreated plot to be occurred the field lodging.