검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 10

        1.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Successful application of graphene requires development of various tools for its chemical modification. In this paper, we present a Raman spectroscopic investigation of the effects of UV light on single layer graphene with and without the presence of O2 molecules. The UV emission from a low pressure Hg lamp photolyzes O2 molecules into O atoms, which are known to form epoxy on the basal plane of graphene. The resulting surface epoxy groups were identified by the disorder-related Raman D band. It was also found that adhesive residues present in the graphene samples prepared by micro-mechanical exfoliation using adhesive tape severely interfere with the O atom reaction with graphene. The UV-induced reaction was also successfully applied to chemical vapor deposition-grown graphene. Since the current method can be readily carried out in ambient air only with UV light, it will be useful in modifying the surfaces of graphene and related materials.
        4,000원
        2.
        2012.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The near explosion of attention given to graphene has attracted many to its research field. As new studies and findings about graphene synthesis, properties, electronic quality control, and possible applications simultaneous burgeon in the scientific community, it is quite hard to grasp the breadth of graphene history. At this stage, graphene's many fascinating qualities have been amply reported and its potential for various electronic applications are increasing, pulling in ever more newcomers to the field of graphene. Thus it has become important as a community to have an equal understanding of how this material was discovered, why it is stirring up the scientific community and what sort of progress has been made and for what purposes. Since the first discovery, the hype has expediently led to near accomplishment of industrial-sized production of graphene. This review covers the progress and development of synthesis and transfer techniques with an emphasis on the most recent technique of chemical vapor deposition, and explores the potential applications of graphene that are made possible with the improved synthesis and transfer.
        4,900원
        3.
        2000.12 KCI 등재 서비스 종료(열람 제한)
        Rye has been a major winter forage crop in Korea. Varietal improvement of rye has been practiced either by hybrid or population breeding systems. Hybrid breeding offers important advantages over population breeding since it is normally a cross-pollinated crop. The hybrid breeding in rye has been possible since cytoplasmically inherited forms of male sterility (CMS) and corresponding nuclear restorer genes were found. The objectives of this research were to develop the maintainer and restorer lines of Korean inbred lines and to estimate the effect of 'Pampa' type of CMS cytoplasm on yield and its related characteristics. For easy discrimination of male-sterile status of plants, anther scoring and the restore index system in which seed-setting and pollen quantity of viability were taken into account were established. High significant correlation between pollen quantity and pollen viability was found. For "Pampa" cytoplasm, four of 14 Korean inbred lines tested turned out to be a maintainer but no restorer was found. But for "235b" CMS cytoplasm, seven inbred lines acted as complete restorers. The Korean inbred rye lines acted mainly as maintainers in "Pampa" cytoplasm but acted mainly as restorer in "235b" cytoplasm. The 'Pampa' cytoplasm inducing male sterility reduced cohn length and plant height and increased the number of tiller, so forage yield and grain yield were enhanced. However, heading date was slightly delayed compared to the normal cytoplasm.elayed compared to the normal cytoplasm.
        4.
        2000.12 KCI 등재 서비스 종료(열람 제한)
        Rye breeding using F1 hybrid began about 30 years ago, when cytoplasmically inherited forms of male sterility (CMS) and corresponding nuclear restorers were detected. It is very important to produce inbred lines for making hybrid lines because of strong self-incompatibility in rye. Among the 456 rye germplasms used in hybrid breeding scheme, 24 lines (5.3%) had the above 60% of self-fertility, and six lines of them were selected for their good agronomic characteristics and were used for subsequent inbreeding program. The average self-fertility of selected six lines was 78.4%, ranging from 72.2 to 99.5%. Genetic analysis for the self-fertility using F2 populations showed that the segregation of self-fertile and sterile plants in F2 populations could be fit into 3 to 1 ratio suggesting self-fertility in rye be controlled by one major gene. The four different self-fertile lines, PI237923, 5C11, 5G5 and Florida black, had the same self-fertility gene because their F2 plants showed almost the same self-fertility as their parents and showed no genetic segregation
        5.
        2000.09 KCI 등재 서비스 종료(열람 제한)
        This experiment was conducted to evaluate the effect on evapotranspiration and yield of soybean according to different soil water conditions, and to find the optimum time and amount for irrigation in soybean cultivation. The difference between potential evapotranspiration (PET) and maximum evapotranspiration (MET) during growing season of soybean planted in lysimeter was higher during reproductive stage than during vegetative one. The maximum crop coefficient was obtained at beginning seed stage of soybean. Soil water coefficient of irrigation treatment was higher than that of non-irrigation treatment during soybean growth stage in field experiment. Grain yield was highest in lysimeter due to its high water use efficiency and evapotranspiration rate.
        6.
        2000.03 KCI 등재 서비스 종료(열람 제한)
        Water deficit is the primary constraint of soybean [Glycine max (L.) Merr.] yield, and a physiological understanding of processes affected by water deficit is a key step in identifying and improving drought tolerance in soybean. The objectives of this research were to evaluate biomass and nitrogen accumulation patterns and water use efficiency (WUE) as possible mechanisms associated with the drought tolerance of Jackson. Biomass accumulation of Jackson was contrasted with the PI416937, which also has demonstrated tolerance to drought. For water-deficit treatment, total biomass accumulation was negligible for PI416937, but biomass accumulation continued at approximately 64 % of the well-watered treatment of Jackson. Transpirational losses for Jackson and PI416937 were approximately the same for the water-deficit treatment, indicating that Jackson had superior WUE. Isotopic discrimination of 13 C relative to 12 C also indicated that Jackson had higher WUE. Results indicated that increased WUE for Jackson under water deficit showed it was tolerant to drought rather than had an avoidance mechanism.
        7.
        2000.03 KCI 등재 서비스 종료(열람 제한)
        Leaf area is critical for crop light interception, and thereby has a substantial influence on crop yield. This experiment was conducted to characterize the development of soybean [Glycine max (L.) Merr.] leaf area. Plastochron index and leaf relative growth rate of Jackson was contrasted with the PI416937, which also has demonstrated tolerance to drought. First, plastochron ratio (PR) and plastochron index (PI) were evaluated in greenhouse to compare the leaf growth rate between two genotypes under well-watered condition. There was reasonable constancy of PR between two genotypes. The PR means of Jackson and PI416937 were 0.41 and 0.44, respectively. A fairly smooth increase of PI during vegetative stage was observed. Second, the relative growth rates were graphed against leaf area, normalized with respect to final leaf area, under well-watered and water-deficit conditions. Leaf growth was sustained longer in well-watered condition than water-deficit condition and there was a sizable proportion of leaves which was ceased earlier their growth in water-deficit condition compared to well-watered condition. The leaf relative growth rate of Jackson until leaves had completed at 45% of their growth during water deficit period was higher than that of PI416937.
        8.
        1999.12 KCI 등재 서비스 종료(열람 제한)
        Extensive research has been conducted on effects of drought stress on growth and development of soybean but information is rather restricted on the limited-irrigation system by way of precaution against a long-term drought condition in the future. The experiment for limited-irrigation was conducted in transparent vinyl shelter at Asian Vegetable Research and Development Center (AVRDC), Taiwan in 1997. Two soybean varieties, Hwangkeum and AGS292, improved in Korea and AVRDC, respectively were used for this experiment. The relationships between normalized transpiration rate (NTR) and fraction of transpirable soil water (FTSW) in both varieties were similar that the NTR was unchanged until FTSW dropped to about 0.5 or 0.6. At FTSW less than those values, NTR declined rapidly. Days required to harvest in both varieties were significantly prolonged at IR6 treatment compared to any other treatments. Daily mean transpiration rate was significantly higher at IR5 treatment, as averaged over varieties. Similarly, water use efficiency was also high at 1R5 treatment. In both varieties, seed yield was the greatest at the IR5 treatment, as compared to any other limited-irrigation treatments, due to the increased seed number and high transpirational water use efficiency. The indices of input water and seed yield for the different limited-irrigation treatments against control indicated that Hwangkeum produced 59.6% or 60.7% of seed yield using 36.1% or 44.9% of input water, as compared to control, by irrigation at only R5 or R6 stages, respectively. The AGS292 produced 56.1% of seed yield with 35.4% of input water of control, when irrigated at R5 stage. The results of this study have elucidated that the limited irrigation at R5 stage in soybean can be minimized yield loss with such small quantity of water under the environment of long-term drought stress and the expected shortage of agricultural water in the future.
        9.
        1999.12 KCI 등재 서비스 종료(열람 제한)
        The effect of water deficits on soybean [Glycine max (L.) Merr.] could appear on seed quality through changes of morphological plant characteristics. Two Korean genotypes, Hwangkeum (determinate growth habit) and Muhan (indeterminate growth habit), were used to examine the influences of treatment stage and method of water deficit during reproductive growth period on yield and seed quality of soybean. Water deficit at R5 or R6 stages was as damaging to seed quality as double water-deficit treatments at R2+R5 or R2+R6. However, seed from double water-deficit treatment tended to have lower oxidation-reduction potential compare to the corresponding single water-deficit treatment. In comparison with Muhan, Hwangkeum had significantly greater oxidation-reduction potential value. Seed yield per plant in both genotypes depended greatly on seed yield of branches. However, the proportion of number of branch seed to total seed umber in Hwangkeum was increased as the water deficit was applied during later reproductive stage, whereas, in Muhan the proportion was lower. Water-deficit treatments including the single and double water-deficit treatments and non-stressed treatment were able to be classified into five groups for Hwangkeum and four groups for Muhan based on the influences on yield components, number of pod, number of seed, and single seed weight, using principal component analysis. In both genotypes, R2+R5 water-deficit treatment decreased number of pod and seed, but increased single seed weight. On the contrary, R6 or R2+R6 stress increased the pod and seed number, but decreased single seed weight
        10.
        1998.06 KCI 등재 서비스 종료(열람 제한)
        Granule bound starch synthase (GBSS), also known as the '"waxy protein'", is responsible for the synthesis of amylose in the amyloplasts of cereal crops. In hexaploid wheat (Triticum aestivum L.), GBSS is involved in amylose synthesis and rolls as an important factor to determine flour quality and end-use quality in food products. Genes on three Wx loci have been found to encode GBSS in common wheats. We developed techniques for the purification and separation of GBSS in wheat. Three major GBSS isoforms, which were encoded by the genes on three loci, Wx-A1, Wx-B1, and Wx-D1 migrating differently by one dimensional SDS-po-lyacrylamide gel electrophoresis (1D SDS-PAGE), were identified. GBSS from 66 Korean hard and soft winter wheats were purified and determined for their Wx loci and four of them were identified possessing a null allele either at the Wx-A1 and Wx-B1 loci. With help of identification of three GBSS isoforms using 1D SDS-PAGE system, we are able to identify and monitor Wx gene expressions in breeding materials for developing waxy or partial waxy wheats without experiencing consecutive selecting generations.cting generations.