There are at least three effects of the non-thermal particle bombardment on the solar atmosphere: (1) non-thermal ionization and excitation; (2) proton-hydrogen charge exchange; (3) impact line polarization. Due to the non-thermal ionization and excitation effects of electron bombardments in flares, Hα line is widely broadened and shows a strong central reversal. Significant enhancements at the line wings of Lyα and Lyβ are also predicted. In the case of proton bombardment, less strong broadening and no large central reversal are expected. However, due to proton-hydrogen charge exchange, the enhancements at the red wings of Lyα and especially of Lyβ lines at the early impulsive phase of flares are significant. Electron beam can also in some cases generates visible and UV continuum emission in white-light flares. However, at the onset phase, a negative 'black' flare may appear in several seconds, due to the increase of the H- opacity. The impact polarization of atomic lines can provide complementary information on the energetic particles, the energy transport and deposit in the solar chromosphere. New results of spectropolarimetric analysis for the major flare on July 23, 2002 are also given in the paper.
Non-LTE calculations, with the non-thermal ionization effects included, indicated that for electron bombardment, the Hα line is widely broadened and shows a strong central reversal. Significant enhancements at the line wings of Lyα and Lyβ are also predicted at the beginning of the impulsive phase of flares. For the proton bombardment, no strong broadening and no large central reversal are expected. However, due to proton-hydrogen charge exchange, the enhancements at the red wings of Lyα and Lyβ lines at the early impulsive phase of flares are significant. Our results show that the electron beam can also in some cases generate visible and UV continuum emission in white-light flares. However, at the onset phase, a negative flare may appear within several seconds, due to the increase of the H- opacity. Another spectroscopic signature of energetic particles, i.e. the impact polarization of atomic lines, is also mentioned.