내진설계규정이 정립되기 전에 시공된 콘크리트 교각의 경우 횡철근을 겹침이음하거나 최소한의 배근으로 최적화를 유도하였다. 따라서 지진하중 발생 시 지진에너지를 소산할 수 있는 에너지 감쇠의 효과가 기존 교각들에는 미흡한 실정이다. 본 논문은 반복하중을 받는 원형콘크리트 교각 외부에 강판, GFRP, CFRP 보강을 적용한 경우, 교각의 지진대응 성능 향상도를 정량적으로 평가하였다. 범용유한요소해석프로그램인 ABAQUS의 다양한 3차원 요소를 적용하여 교각 구조물을 모델링하였으며,하중은 교각 상부에 횡방향 동적하중과 교각 전체 자중이 고려되었다. 하중-변위 곡선, 응력-변형률 곡선, 연성도, 에너지 흡수 능력(연성도), 손상도를 고려하여 보강에 따른 교각의 내진성능 향상도를 비교분석하였다. 비보강 콘크리트 교각의 경우 연성도는 78%로 취성파괴 구조물이었으나, 강판보강의 경우 91.0%, GFRP보강의 경우 91.9%, CFRP보강의 경우 92.0%이다. 세 가지 보강의 종류를 비교한 결과 강도, 연성도, 손상도 모두에 있어서 CFRP보강의 경우가 가장 큰 증진 효과를 보이고 있다.
This research investigates the effects of trench installation methods with expanded polystyrene (EPS) geofoam on the behavior of buried corrugated steel arch structure. A universal finite element analysis program, ABAQUS, was used to model and analyze the structure. For this study, the S275 corrugated steel with a profile of 152x51mm and the arch has fixed boundary condition. The structure was analyzed for three different configurations, namely; without EPS geofoam, imperfect trench installation (ITI), and embedded trench installation (ETI). ITI and ETI cases were further divided depending on the width and height of EPS geofoam. The width of EPS geofoam varies from the span of the arch up to a 30% increase of the span of the arch while its height varies from the rise of the arch upto 100% increase of the rise of the arch. The results from the finite element analysis revealed that the ETI reduced the wall stresses by at least 53.95%. It is recommended to conduct further study regarding ETI to validate the results and to further improved the design criteria of buried corrugated steel arch as it is expected to bring about cost reduction and stability for buried structures.