검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Although the proportion of coal-fired power generation is decreasing, efficient operating technology is needed to continuously invest in facilities and reduce maintenance costs until it is abolished. Boilers, one of the main facilities of power plants, operate for a long time in harsh environments of high temperature and high pressure. In addition, damage due to deterioration is likely to occur depending on the fuel and tube material used. It is very important to judge soundness because damage caused by deterioration adversely affects facility operation. Previously, replication method was used to analyze the progress of deterioration. In the replication method, pre-treatment such as chemical treatment is performed on the boiler tube in the field, the area is reproduced by attaching a film, and the replicated film is determined by an expert in the laboratory with an expensive microscope. However, this method involves substantial costs and time requirements, as well as the possibility of human errors. To address these issues, we developed a mobile health assessment system in this research. Since it is detachable and takes images in real time, this system enables swift evaluations across a broad range and facilitates the assessment of preprocessing quality. In addition, it was intended to reduce existing human mistakes by developing a degradation classification algorithm using the merger cluster method.
        4,000원
        2.
        2023.05 구독 인증기관·개인회원 무료
        LILW disposal repository in Gyeongju, South Korea is considered with a concrete mixture that uses Ordinary Portland Cement (OPC) partially substituted with supplementary cementitious materials (SCMs). The degradation of cementitious materials that result from chemical and physical attacks is a major concern in the safety of radioactive waste disposal. We present a reactive transport model utilized as one of the geochemical simulation approaches for the timescales of concern that range from hundreds to thousands of years. The purpose of this study is to investigate the sensitivity of parameters in concrete disposal systems and to evaluate the influence of various assumptions on the chemical degradation of the systems using a reactive transport model. A reactive transport model in the concrete disposal vault was developed to evaluate the behavior of engineered barriers composed of cementitious materials. The sensitivity analysis was performed using reactive transport models through the coupling between COMSOL and PHREEQC. The databases selected for the analysis are the Thermochimie database presented by ANDRA. Among many variables considered, two variables that can highly affect chemical degradation were selected for detailed sensitivity analysis for dealing with uncertainties. This is important because the chemical degradation mechanism is generally sensitive to precipitation and diffusion coefficient. The first factor is precipitation, which might be the most important factor in chemical degradation because it acts as a calcium leaching of cementitious materials in a disposal system in a highly alkaline environment, increasing the porosity of the system. To predict the change in annual precipitation, the measurement of the precipitation observatory station in the nearest area of Gyeongju for the past 80 years was collected. The second factor is the diffusion coefficient, which plays an essential role in the durability of the concrete disposal system, promoting the decalcification of cementitious minerals, accelerating system degradation, and increasing the porosity of its system, thereby facilitating the migration of radionuclides. The diffusion coefficient values used in studies similar to this work were calculated and evaluated using the box-and-whisker method. The results of the sensitivity analyses for the reactive transport model in the concrete disposal system will be presented. The sensitivity cases show that the results obtained are much more sensitive to changes in transport parameters.