There exists very little information on the ultrastructure of substance P immunopositive (+) fibers in the human dental pulp, which may help in understanding the mechanism for substance P associated pulpal inflammatory pain. To address this issue, we investigated the presence of substance P+ fibers in the human dental pulp by light- and electron-microscopic immunohistochemistry.
Light microscopy revealed that substance P+ fibers ran within neurovascular bundles in the radicular pulp and in the core of coronal pulp. They were also frequently present in the peripheral pulp. Substance P+ fibers showed beads like swellings interconnected by thin axonal strand, in a manner similar to bouton en passants and interconnecting axonal strand in the spinal cord.
Electron microscopy revealed that almost all the substance P+ axons were unmyelinated. The axonal swellings of the substance P+ contained numerous clear round vesicles (40-50 nm in diameter) and many large dense-cored vesicles (80-110 nm in diameter) as well as many mitochondria. The vesicles and mitochondria were rarely observed in the thin axonal strand interconnecting the swellings. Intimate interrelationship or synaptic structure between the swellings of substance P+ axon and nearby pulpal cells or axons was not found.
These findings suggest co-release of substance P and glutamate from the substance P+ pulpal axons and its action on nearby structures in a paracrine manner.
We have used bulked segregant analysis to screen the strain-specific DNA marker associated psychrophilic strain of Pleurotus eryngii. Bulked genomic DNAs of Pleurotus eryngii were amplified by randomly amplified polymorphic DNA (RAPD) using OP-A, OP-B, OP-L, OP-P, OP-R and OP-S primers to screen the strain-specific DNA marker. A unique DNA fragment of 490 bp was amplified with OP-L18 primer from the psychrophilic strain and sequenced. A sequence characterized amplified region (SCAR) marker was designed on the basis of the determined sequence and named as OP-L18-1. The PCR analysis with the OP-L18-1 primer showed that this SCAR marker clearly distinguish the psychrophilic strains from the control strains.
Effect of magnetic field on the thermal instability is studied in the radiatively cooling region behind an interstellar shock of moderate propagation velocity ( ∼ 10 k m / s e c ). It is shown that the presence of interstellar magnetic field of a few micro gauss is very effective in preventing the thermal instability from building-up density concentration. In the absence of magnetic field, the shock-induced thermal instability amplifies preshock density inhomogeneity by more than an order of magnitude. However, in the presence of magnetic field, the amplified density contrast is shown to be only a factor 2.
2003년에 이상적으로 많이 발생하여 벼에 심각한 피해를 가져온 혹명나방의 재배방법별, 엽록소 함량별 피해실태를 조사하여 피해에 따른 수량반응, 미질변화 등을 구명하고자 조사한 결과는 다음과 같다. 1. 혹명나방의 피해가 심할수록 벼의 등숙비율, 천립중의 감소와 복백립 등 미숙립의 증가에 따른 완전미 비율이 감소되어 완전미 수량이 피해가 심한 곳에서 36% 감소되었다. 2. 혹명나방의 피해가 심할수록 쌀의 외관상 품위가 떨어질 뿐만 아니라 단백질함량이 높아져 식미치는 감소되어 미질이 급격히 저하되었다. 3. 질소질 비료의 시용량이 증가할수록 혹명나방에 의한 피해는 증가하였으며, 특히 주남벼의 경우 질소량이 증가할수록 피해가 급증하였다. 4. 질소 시비량이 추천 시비량인 11 kg/10a를 초과시 피해엽율이 60% 이상으로 급증하였고, 60% 이상 피해를 입은 엽의 비율도 25%이상으로 늘어나 수량 감수 요인으로 작용하였다.
The color and structure of urban constructions is a factor of urban landscape and shows their characteristics. Hence the modern buildings deal with their materials and external appearance as an important factor, making up the urban image. But it was nearby impossible to evaluate the value of visual landscape with objective measuring method. Most of all, it depends on the subjective estimation of a few talented or high educated experts with a sense of beauty. Such kinds of estimation can in some cases include arbitrary interpretations. In relation to this kind of problems, it is tried here in this study to analyse the human response of brain wave pattern (EEG) with use of SD method, while the tested persons watch the urban landscape scenery constructed in a visual reality.
The tested persons were 20 adult male and female with no color blindness and intact cognitive function. Light source with color filter was used for color environment in a dark soundproof chamber. The signal of EEG is analysed digitally and grouped into the α and β waves. The result showed that relative power of α wave ratio increased in the natural landscape scenery with blue and green color. From these results it was possible to evaluate the human response, which is affected by urban and natural color and structure stimulation and it might be useful as an indicator of visual cognition amenity toward the design of urban construction environment.
This experiment was conducted to investigate the variation of nitrogen use efficiency, nitrogen uptake efficiency, physiological utilization efficiency and their relationships with growth characteristics in the 28 Korean rice cultivars. Nitrogen use efficiency of 28 rice cultivars was 47.74, nitrogen uptake efficiency was 0.71, and physiological utilization efficiency was 68.76 in average. Nitrogen use efficiency of rice cultivars had low variation ranged from 44.09 to 51.91, but nitrogen uptake efficiency were relatively high variation from 0.51 to 0.90, and physiological utilization efficiency was from 51.71 to 94.26. The high efficient group in nitrogen uptake efficiency whose value was calculated above 0.80 included Daeanbyeo, Seojinbyeo, Ansungbyeo, Dongjinbyeo, and Hwaanbyeo, while the low efficient group with below 0.60 was Kwanganbyeo, Sampyeongbyeo, Soorabyeo, and Hwasungbyeo. Hwasungbyeo, Sampyeongbyeo, Soorabyeo for physiological utilization efficiency were more efficient cultivars, while Daeanbyeo, Seojinbyeo, Ansungbyeo were less efficient cultivars. Nitrogen uptake efficiency had positive correlation coefficients between dry matter weight of plant (0.842** ), leaf area index (0.761** ), and leaf nitrogen content (0.599** ), respectively. Therefore, the dry matter weight of rice plant and leaf area index was important characters to evaluate nitrogen uptake efficiency in rice cultivars. Also, more efficient cultivar in nitrogen uptake had higher chlorophyll meter value, which was appeared dark green color.
Noodle texture parameters of Korean style wet and dry noodles and relationships between noodle quality and flour characteristics were evaluated for two years, 1997 and 1998, and at two locations, Suwon and Deokso, using Korean winter wheat cultivars and lines. No significant difference for chewiness was found between cultivars over locations. Noodles made from flours from 1997 showed significantly higher chewiness than those from 1998. Chewiness of cooked noodles showed positively significant correlations with protein content and SDS sedimentation volume and negatively significant correlations with starch peak viscosity and flour swelling volume. Korean winter wheat cultivars, except for Gobunmil, Keumkangmil Tapdongmil, Suwon 265 and Suwon 280, showed chewiness of cooked noodles similar to commercial flours used for noodle making in Korea and Japan.
Bread baking parameters and relationships between bread baking properties and flour characteristics were evaluated for two years, 1997 and 1998, and at two locations, Suwon and Deokso, with Korean winter wheat cultivars and lines. Among the bread baking parameters, lightness of crumb grain showed differences between years. No significant differences were found in dough mixing time, bread loaf volume, crumb grain score or firmness. Keumkangmil, Suwon 278 and Tapdongmil showed higher bread loaf volume, good structure of crumb grain and softer crumb firmness. However, compared to commercial flours for baking, cultivar means averaged over years and locations of nineteen Korean winter wheats showed poor bread baking quality because of low protein content and unsuitable protein quality. Protein content and flour swelling volume showed better relationships with the bread baking parameters than other flour characteristics. Friabilin-absence lines showed softer crumb firmness than those of friabilin-presence lines