검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2023.11 구독 인증기관·개인회원 무료
        Deep borehole drilling is essential not only to select the host rock type for deep geological disposal of high-level radioactive waste (HLW), but also to identify the characteristics of the disposal site during the site selection process. In particular, since the disposal depth of HLW is considered to be over 300 m, deep borehole drilling must be performed. In deep borehole drilling, drilling design, excavation, and operation may vary depending on the rock type, drilling depth, and drilling purpose etc. This study introduced cases in which Korea was divided into four geotectonic structures and four representative rock types and conducted with a goal of 750 m drilling depth. Prior to this, a review of deep drilling cases conducted at domestic and abroad was presented. If sufficient time and cost are available, several drilling holes can be excavated for various purposes, but if not, one or two drilling holes should be used to achieve the objectives of various fields related to HLW disposal. The presence of bedding, strata or fault zones depending on the type of rock, etc. may affect drilling deviation or circulating water management. In addition, unlike drilling in general geotechnical investigation drilling, the use of polymers or grouting agents is limited to determine hydraulic and geochemical characteristics. This report introduces the experience considered during the design and drilling process of deep drilling in granite, gneiss, sedimentary rock, volcanic rock, etc., and is expected to be used as basic data when carrying out future HLW projects.
        2.
        2022.10 구독 인증기관·개인회원 무료
        The reliable information on the hydraulic characteristics of rock mass is one of the key site factors for design and construction of deep subsurface structures such as geological radioactive nuclear waste disposal repository, underground energy storage facility, underground research laboratory, etc. In order to avoid relying on foreign field test technology in future projects, we have independently designed and made integrated type main frame, 120 bar waterproof downhole sonde, and 1,200 m wireline cable winch through a series of R&D activities. They are core apparatuses of the Deep borehole Hydraulic Test System (DHTS). Integration of individual test equipment into a single main frame allows safe and efficient work in the harsh field condition. The DHTS was developed aiming primarily for constant pressure (head) injection test and pulse test in deep impermeable rock mass. The maximum testing depth of the DHTS is about 1,050 m from the surface. Using this system, it is possible to make precise stepwise control of downhole net injection pressure in less than 2.0 kgf/cm2 with dual hydraulic volume controller and also to inject and measure the very low flow rate below 0.01 l/min with micro flow rate injection/control module. Over the past two years, we have successfully completed more than 50 in situ hydraulic tests at 5 deep boreholes located in the Mesozoic granite and sedimentary rock regions in Korea. Among them, the deepest testing depth was more than 920 m. In this paper, the major characteristics of the DHTS are introduced and also some results obtained from the high precision field tests in the deep and low permeable rock mass environment are briefly discussed.
        3.
        2022.10 구독 인증기관·개인회원 무료
        The depth of geological disposal of high-level radioactive waste (HLW) varies from country to country, but it is generally considered below 300 m underground. As one of the reliable methods to understand the geological characteristics of these deep areas, the site investigation through drilling is recommended. This paper deals with multidisciplinary research that evaluates the geological characteristics of the site using deep drilling. The deep drilling is 750 m, which is higher than the planned disposal depth. Prior to drilling, literature and surface geological surveys of the target area were conducted, and during drilling, real-time measurement of excavated information for obtaining drilling information, circulating water management and chemical composition through a closed system were monitored. After drilling, field tests such as geophysical borehole logging, deep groundwater sampling, constant pressure injection test, and hydraulic fracturing test were performed. Analysis of the recovered drilling core from a geological point of view such as age dating, rock formation and structural geological analysis, and from geochemical perspectives such as concentration of major/ minor cationic elements, major anions, and trace elements along with the water quality parameters pH, DO, Ec, Eh, etc., from geothermal perspective such as thermal conductivity and coefficient of thermal expansion, from rock mechanical aspects such as physical and mechanical properties of intact rocks and joints, joint distribution, etc. Deep drilling has been completed with 2 holes for granite and 2 holes for sedimentary rocks, and further drilling for gneiss and sedimentary rocks is in progress.