Recently, several approaches have been used to measure the oxygen consumption rates of individual embryos, but relationship between oxygen consumption and pregnancy rates of Hanwoo following embryo transfer has not yet been reported. In this study, we investigated the correlation between oxygen consumption rate and pregnancy rates of Hanwoo embryo using a SECM. In addition to, the expression of apoptosis-related genes was determined using real-time PCR by extracting RNA according to the oxygen consumption of in vivo embryo. First, we found that the oxygen consumption significantly increased in blastocyst-stage embryos (blastocyst) compared to early blastocyst stage embryos, indicating that oxygen consumption reflects the embryo quality (Grade I). The oxygen consumption or GI blastocysts were significantly higher than those of GII blastocysts (10.2x1014/mol s-1 versus 6.4x1014/mol s-1, p<0.05). Pregnant rate in recipient cow was 0, 60 and 80% in the transplantation of embryo with the oxygen consumption of below 10.0, 10.0~12.0 and over 12.0x1014/mol s-1, respectively. Apoptosis regulatory genes, Hsp-70.1 were significantly increased in over-10.0 group than below 10.0 group but in Caspase-3, Bax and P53 gene, there was no significant difference. In conclusion, These results suggest that measurement of oxygen consumption maybe help increase the pregnant rate of Hanwoo embryos.
We inoculated a spent mushroom substrate from Flammulina velutipes (SMSF) with a microbial additive and assessed the effects on chemical composition, ruminal fermentation parameters, and total-tract nutrient digestibility. In Exp. 1, three cannulated Hanwoo steers were used in an in situ trial to determine the degradation kinetics of dry matter (DM) and crude protein (CP). In Exp. 2, three Hanwoo steers were randomly assigned to experimental diets according to a 3 × 3 Latin square for a 3-week period (2 weeks for adaptation and 1 week for sample collection). Experimental diets included the control diet (3.75 kg/d formulated concentrate mixture + 1.25 kg/d rice straw), SMSF diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d SMSF), and inoculated SMSF (ISMSF) diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d ISMSF). The chemical composition of ISMSF did not differ from that of SMSF. Microbial additive inoculation decreased pH (P<0.05) and improved preservation for SMSF. The percentages of DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in ISMSF were slightly lesser than those in SMSF. Ruminal fermentation characteristics and total-tract nutrient digestibility were not affected by diet. Overall, microbial additive inoculation improved preservation for SMSF and may allow improved digestion in the rumen; however, the total digestible nutrients (TDN) of SMSF and ISMSF diets were slightly lesser than the control diet. The ISMSF can be used as an alternative feedstuff to partially replace formulated concentrate feed.