검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2013.07 서비스 종료(열람 제한)
        In order to better understand the biological systems that are affected in response to cosmic ray, we conducted the weighted gene co-expression network analysis with module detection method. By using the Pearson’s correlation coefficient value, we were evaluated the complex gene-gene functional interactions between 680 CR-response probes from integrated microarray datasets, which included large-scale transcriptional profiling of 918 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched function such as oxidoreductase activity, response to stimulus and stress, and hydrolase activity. Especially, module 1 and 2 commonly showed the enriched annotation categories such as oxidoreductase activity, including the enriched cis-regulatory elements known as ROS specific regulator. These results suggest in module1 and 2 that ROS-mediated irradiation response pathway are affected by CR. We found the 243 irradiation-dependent probes, which were exhibited the similarities of differentially expressed patterns in various irradiation microarray datasets, and RT-PCR for confirmations of several irradiation-dependent genes were exhibited the similar expressed patterns in rice by CR, gamma ray and Ion beam treatments. Interestingly, these genes were differentially expressed by non-gravity. Moreover, we were identified the co-regulations between several irradiation-dependent genes and functional interacted genes in the CR-responsive network by various GA treatments such as different conditions of dose and treatment time. These results of network-based analysis might provide a clue to understanding the complex biological system of CR.
        2.
        2012.12 KCI 등재 서비스 종료(열람 제한)
        Compared to wide ranges of genetic variation of natural populations, very limited Miscanthus cultivar has been released. This study was the first report on the development of Miscanthus cultivar by means of radiation breeding. Seeds of M. sinensis were initially exposed to gamma rays of 250 Gy for 24 h, generated from a 60Co gamma-irradiator. The irradiated seeds were sown and then the highly tiller-producing mutants were selected for this study. Biomass-related parameters including tiller number, plant height, stem diameter, and leaf number were measured. Ploidy level and internal transcribed spacer (ITS) were investigated to characterize the mutants compared to wild type (WT) Miscanthus. Plant height and tiller number were negatively related, where multi-tillering mutants were relatively short after 4 month growth. However stem diameter and leaf number were greater in mutants. All the materials used in this study were diploid, implying that the mutants with greater tiller numbers and stem diameter were not likely related to polyploidization. Based on the sequence of ITS regions, the mutants demonstrated base changes from the gamma irradiation where G+C content (%) was decreased in the ITS1, but increased in ITS2 when compared to WT sequence. ITS2 region was more variable than in ITS1 in the mutants, which collectively allows identification of the mutants from WT. Those mutants having enhanced tillers and allelic variations might be used as breeding materials for enhanced biomass-producing Miscanthus cultivars.