검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 9

        1.
        2020.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        콘크리트 구조물 절단에 사용되고 있는 다이아몬드 와이어 쏘가 장착된 당김형 절단 장치의 단점을 개선하여 밀기형 절단장치를 개발하였다. 개발된 밀기형 절단장치에는 먼지 집진 커버가 부착되며 마찰열을 냉각하기 위한 건식이나 습식방법을 선택할 수 있다. 개발된 절단장치의 동작특성과 집진 먼지의 누설률 측정을 실험하였다. 시험결과 원활한 동작특성을 보였으며, 먼지의 누설률은 1.7%인 것으로 나타났다. 개발된 절단장비를 사용하여 생물학적 차폐 콘크리트 절단 시 작업자의 내부 피폭선량을 평가하였다. 보수적 평가를 위해 노심 중심부분을 절단하는 경우를 가정하였다. 비방사능이 99.5 Bq·g-1인 누설 먼지로 인해 반면마스크를 착용한 작업자의 예탁유효선량은 0.25 mSv로 평가되었다. 개발된 밀기형 절단장비 사용 시 미량의 먼지 누설률로 인해 작업자의 방사선 피폭이 저감되며, 사용의 편리성으로 세부 절단 계획을 수립할 수 있어 방사성 콘크 리트 폐기물 감량에도 기여할 수 있다. 따라서 원전의 방사화된 생물학적 차폐 콘크리트를 비롯하여 철근 콘크리트 구조물 해체 작업 시 절단 장비로서 사용될 수 있을 것이다.
        4,000원
        2.
        2018.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Metallic tantalum powder is manufactured by reducing tantalum oxide (Ta2O5) with magnesium gas at 1,073–1,223 K in a reactor under argon gas. The high thermodynamic stability of magnesium oxide makes the reduction reaction from tantalum oxide into tantalum powder possible. The microstructure after the reduction reaction has the form of a mixture of tantalum and magnesium oxide, and the latter could be entirely eliminated by dissolving in weak hydrochloric acid. The powder size in SEM microstructure for the tantalum powder increases after acid leaching in the range of 50–300 nm, and its internal crystallite sizes are observed to be 11.5 to 24.7 nm with increasing reduction temperatures. Moreover, the optimized reduction temperature is found to be 1,173 K as the minimum oxygen concentration is approximately 1.3 wt.%.
        4,000원
        3.
        2018.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, an experiment is performed to recover the Li in Li2CO3 phase from the cathode active material NMC (LiNiCoMnO2) in waste lithium ion batteries. Firstly, carbonation is performed to convert the LiNiO, LiCoO, and Li2MnO3 phases within the powder to Li2CO3 and NiO, CoO, and MnO. The carbonation for phase separation proceeds at a temperature range of 600oC~800oC in a CO2 gas (300 cc/min) atmosphere. At 600~700oC, Li2CO3 and NiO, CoO, and MnO are not completely separated, while Li and other metallic compounds remain. At 800 oC, we can confirm that LiNiO, LiCoO, and Li2MnO3 phases are separated into Li2CO3 and NiO, CoO, and MnO phases. After completing the phase separation, by using the solubility difference of Li2CO3 and NiO, CoO, and MnO, we set the ratio of solution (distilled water) to powder after carbonation as 30:1. Subsequently, water leaching is carried out. Then, the Li2CO3 within the solution melts and concentrates, while NiO, MnO, and CoO phases remain after filtering. Thus, Li2CO3 can be recovered.
        4,000원
        4.
        2017.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Titanium carbide (TiC) powders are successfully synthesized by carburization of titanium hydride (TiH2) powders. The TiH2 powders with size lower than 45 μm (-325 Mesh) are optimally produced by the hydrogenation process, and are mixed with graphite powder by ball milling. The mixtures are then heat-treated in an Ar atmosphere at 800-1200oC for carburization to occur. It has been experimentally and thermodynamically determined that the dehydrogenation, “TiH2 = Ti + H2”, and carburization, “Ti + C = TiC”, occur simultaneously over the reaction temperature range. The unreacted graphite content (free carbon) in each product is precisely measured by acid dissolution and by the filtering method, and it is possible to conclude that the maximal carbon stoichiometry of TiC0.94 is accomplished at 1200oC.
        4,000원
        5.
        2013.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study on the fabrication of iron powder from forging scales using hydrogen gas has been conducted on the effect of hydrogen partial pressure, temperature, and reactive time. The mechanism for the reduction of iron oxides was proposed with various steps, and it was found that reduction pattern might be different depending on tem- perature. The iron content in the scale and reduction ratio of oxygen were both increased with increasing reactive time at 0.1atm of hydrogen partial pressure. On the other hand, for over 30 minutes at 0.5 atm of hydrogen partial pressure, the values were found to be almost same. In the long run, iron metallic powder was obtained with over 90% of iron content and an average size of its powder was observed to be about 100 µm.
        4,000원
        6.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The potential application of ultrafine cerium oxide (ceria, ) as an oxygen gas sensor has been investigated. Ceria was synthesized by a thermochemical process: first, a precursor powder was prepared by spray drying cerium-nitrate solution. Heat treatment in air was then performed to evaporate the volatile components in the precursor, thereby forming nanostructured having a size of approximately 20 nm and specific surface area of 100 . After sintering with loosely compacted samples, hydrogen-reduction heat treatment was performed at 773K to increase the degree of non-stoichiometry, x, in . In this manner, the electrical conductivity and oxygen-response ability could be enhanced by increasing the number of oxygen vacancies. After the hydrogen reduction at 773K, was obtained with nearly the same initial crystalline size and surface. The response time measured at room temperature was extremely short at 4 s as compared to 14 s for normally sintered . We believe that this hydrogen-reduced ceria can perform capably as a high-performance oxygen sensor with good response abilities even at room temperature.
        4,000원
        7.
        2006.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
          Recently, the control chart is developed for monitoring processes with normal short production runs by the coefficient of variation(CV) characteristic for a normal distribution. This control chart does not work well in non-normal short production runs.
        4,000원
        9.
        2002 서비스 종료(열람 제한)
        This paper aims to apply a supply chain modeling and its analysis framework to the supply chain in the port industry. The simulation approach serves two purposes: to model a supply chain network in quantity approach and to evaluate its supply chain performance based on proposed strategies. Through the modeling works to improve the performance, the components of simulation model such as input model, strategy model, operational policy model and performance model in port supply chain were identified. The effects of various strategies can guide the way to administrate the supply chain in the different objectives.