We investigated three fan-shaped jets observed above sunspot light bridges or nearby sunspot regions. The study aimed to explore the dynamics and physical properties of jets’ features that appear as blob-like structures at the tips of the jets, which we call ‘dark blobs’. A transparent region is observed beneath the dark blobs, creating a visible gap between the dark blobs and the trailing body of the jets. These phenomena were studied in chromospheric and transition region imaging and spectral high-resolution co-observations from the Visible Imaging Spectrometer of the Goode Solar Telescope at the Big Bear Solar Observatory and the Interface Region Imaging Spectrograph (IRIS), together with data from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory. We analyzed the jets’ morphology and fine structure. We obtained the spatial scale and the dynamics of the dark blobs that are seen mostly in the wings of the Hα line and have a cross-section of about 0.2′′–0.3′′. The dark blobs and the transparent regions are seen bright (in emission) in the IRIS slit-jaw 1330 Å, 1400 Å, and AIA 304 Å images. The IRIS Si iv 1394 Å spectrum of the brightenings showed blue-shifted emission of about 16 km s−1 with non-thermal velocities of up to 40 km s−1. We also estimated the electron density of the blue-shifted brightenings to be 1012.1±0.2 cm−3. Our findings likely suggest that we detect the observational signatures of shock waves that generate and/or contribute to the evolution of fan-shaped jets.
The Challan instrument is a solar full-disk imaging spectroscopic telescope planned to be installed at three sites with a 120-degree longitudinal difference, enabling continuous 24-hour observations of the Sun. It will take data every 2.5 min with a spatial resolution of 2–3′′ and a spectral resolving power (R) of >43,000 in Hα and Ca ii 8542 Å bands simultaneously. Challan is composed of two modules, each dedicated to a specific waveband. This modular design is beneficial in minimizing the scattered light and simplifying the structure and engineering. The primary scientific goal of Challan is to investigate solar flares and filament eruptions. It is also expected to detect small-scale events in the solar chromosphere. In 2025, Challan will be installed at the Big Bear Solar Observatory for test observational runs, followed by scientific runs in 2026.
The Sun-Earth Lagrange point L4, which is called a parking space of space, is considered one of the unique places where solar activity and the heliospheric environment can be observed continuously and comprehensively. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of Sun-Earth connections from remote-sensing observations. The L4 mission will significantly contribute to advancing heliophysics science, improving space weather forecasting capability, extending space weather studies far beyond near-Earth space, and reducing risk from solar radiation hazards on human missions to the Moon and Mars. Our paper outlines the importance of L4 observations by using remote-sensing instruments and advocates comprehensive and coordinated observations of the heliosphere at multi-points including other planned L1 and L5 missions. We mainly discuss scientific perspectives on three topics in view of remote sensing observations: (1) solar magnetic field structure and evolution, (2) source regions of geoeffective solar energetic particles (SEPs), and (3) stereoscopic views of solar corona and coronal mass ejections (CMEs).
We present an updated version of the multilayer spectral inversion (MLSI) recently proposed as a technique to infer the physical parameters of plasmas in the solar chromosphere from a strong absorption line. In the original MLSI, the absorption prole was constant over each layer of the chromosphere, whereas the source function was allowed to vary with optical depth. In our updated MLSI, the absorption prole is allowed to vary with optical depth in each layer and kept continuous at the interface of two adjacent layers. We also propose a new set of physical requirements for the parameters useful in the constrained model tting. We apply this updated MLSI to two sets of Hα and Ca ii line spectral data taken by the Fast Imaging Solar Spectrograph (FISS) from a quiet region and an active region, respectively. We nd that the new version of the MLSI satisfactorily ts most of the observed line proles of various features, including a network feature, an internetwork feature, a mottle feature in a quiet region, and a plage feature, a superpenumbral bril, an umbral feature, and a fast down ow feature in an active region. The MLSI can also yield physically reasonable estimates of hydrogen temperature and nonthermal speed as well as Doppler velocities at different atmospheric levels. We conclude that the MLSI is a very useful tool to analyze the Hα line and the Ca ii 8542 line spectral daya, and will promote the investigation of physical processes occurring in the solar photosphere and chromosphere.