The behaviour of steel powder compacts during sintering has been investigated by dilatometry and X-ray computed microtomography. Dilatometry measurements showed that the anisotropic deformation results from various phenomena arising at different moments of the cycle including the delubrication stage. Microtomography provided 3D images of the microstructure induced by prior die pressing and its changes throughout sintering. Finally a schematic description of the main phenomena responsible for the deformation of metal powder compacts during sintering is proposed.
Anisotropic constitutive equations for sintering of metal powder compacts have been formulated from a linear viscous transversely-isotropic model in which an anisotropic sintering stress has been introduced to describe free sintering densification kinetics. The identification of material parameters defined in the model, has been achieved from thermomechanical experiments performed on 316L stainless steel warm-compacted powder in a dilatometer allowing controlled compressive loading.
Active layer의 형성법에 따른 첫번째 모듈 set와 두번째 모듈 set 사이의 성능변화가 축방향 속도와 용질 농도변화를 통하여 각 모듈 set별로 비교, 고찰되었다. 모든 실험들은 같은 transmembrane pressure와 막면적당 에너지 소모하에서 동시에 수행되었다. 첫번째 모듈 set에 대해서 Dean vortices가 존재하는 나선형 모듈과 Dean vortices가 없는 선형모듈로 수행된 모든 비교 실험에서 용질 flux와 투과계수는 vortex flow의 경우 훨씬 큰 값을 보였다. 두번째 모듈 set에 대해서 순수에 대한 두 모듈의 투과계수는 다른 값을 보이고 있으며 선형 모듈의 투과계수가 나선형 모듈에 비해 약 150% 높은 것으로 나타났다. 이는 두 모듈의 막이 완전히 달라졌음을 보여준다.
A curved channel duct is designed, built and used specifically to produce Dean vortices as a result of flow around a 180℃ curve. We present evidence using optical reflection of the existmace of the vortices in the curved section and following flat section. Also, three different feed soludons(DI water, a monodispersed styrene-divinyl-benzene latex particle suspension and a yeast suspension) were used to determine the effectiveness of Dean instabilities to destabilize polarization layers. For each suspension, the flux data were compared as a function of time for flow conditions with and without Dean vortices, for a 0.2μm microfiltration membrane. Any permeation flux improvement was not sustained for 2.0Dec due to the vortex-decay in the flat section after the curved channel, but a 15~30% permeation improvement was obtained for 3.8Dec
Synthetic membrane processes are being increasingly integrated into existing reaction, isolation, and recovery schemes for the production of valuable biological molecules. In many cases they are replacing traditional unit processes. The properties of membrane systems which are most often exploited for both upstream and downstream processing and their permselectivity, high surface area per unit volume, are their potential for controlling the level of contact and/or mixing between two separate phases. Advances in both membrane materials and module design and operation have led to better control of concentration polarization and membrane fouling. After presenting some recent advances in membrane materials and fluid mechanics, we demonstrate how membranes have been integrated into cellular and enzymatic reaction schemes. This is followed by a review of established and emerging synergism between biological processes and synthetic membranes.