Gamma imaging devices that can accurately localize the radioactive contamination could be effectively used during nuclear decommissioning or radioactive waste management. While several hand-held devices have been proposed, their low efficiency due to small sensors have severely limited their application. To overcome this limitation, a high-speed gamma imaging system is under development which comprises two quad-type detectors and a tungsten coded aperture mask. Each quad-type detector consists of four rectangular NaI(Tl) crystals with dimensions of 146×146 mm2 and 72 square-type photomultiplier tubes (PMTs). The detectors are placed in front and back to serve as scatter and absorber, respectively, for Compton imaging. In addition, a coded aperture mask was fabricated in rank 19 modified uniformly redundant array pattern and placed in front of the scatter for coded aperture imaging. The system offers several advanced features including 1) high efficiency achieved by employing large-area NaI(Tl) crystals and 2) broad energy range of imaging by employing a hybrid imaging combining Compton and coded aperture imaging. The imaging performance of the system was evaluated through experiments in various conditions with different gamma energies and source positions. The imaging system provides clear images of the source locations for gamma energies ranging from as low as 59.5 keV (241Am) to as high as 1,330 keV (60Co). The imaging resolution was within the range of 7.5–9.4°, depending on gamma energies, when a hybrid maximum likelihood estimation maximization (MLEM) algorithm was used. The developed system showed high sensitivity, as the 137Cs source at distance, incurring dose rate lower than background level (0.03 μSv/h above background dose rate), could be imaged in approximately 2 seconds. Even under lower dose rate condition (i.e., 0.003 μSv/h above background dose rate), the system was able to image the source within 30 seconds. The system developed in the present study broadens the applicable conditions of the gamma ray imaging in terms of gamma ray energy, dose rate, and imaging speed. The performance demonstrated here suggests a new perspective on radiation imaging in the nuclear decontamination and radioactive waste management field.
During decommissioning of a nuclear power plant, a large amount of radioactive waste is produced, and it is known to cost more than 300 billion won to dispose the waste. To reduce the disposal cost, it is essential to minimize the number of radioactive waste drums, which can be achieved by detecting and removing hotspot contaminations in the radioactive waste drums. Therefore, a Compton CT system for radioactive waste monitoring is under development, which provides the images of both the internal structure of the drum and the radioactive hotspot(s) in the drum. Based on the acquired information, the activity of hotspots can be estimated. The performance of the system is affected by various geometry factors. Therefore, it is essential to determine optimal configuration by evaluating the effects of the factors on the performance of the system. In the present study, we determined the optimum value of the factors and then predicted the performance of the optimized system by using a simulator based on the Geant4 Monte Carlo simulation. For optimization, the factors were evaluated in terms of structural similarity index measure (SSIM) and measurement time. The considered factors were the activity of the CT source, source to object distance (SOD), object to detector distance (ODD), and projection angle. The simulation result showed that the activities of the CT sources were determined as 23 mCi for 137Cs and 9.6 mCi for 60Co. The optimal SOD and ODD were 180 cm and 40 cm, respectively. The optimal projection angle was evaluated as 4° since it achieves the SSIM of 0.95 faster than other projection angles. With the optimized parameters, the performance of the system was evaluated using the IAEA gamma CT standard phantom containing a hotspot of 137Cs (7.02 μCi). The Compton image was reconstructed using the back-projection algorithm, and the CT image was reconstructed using the filtered back-projection algorithm. The result showed that the location of the hotspot in the Compton image was well identified at the true position. The acquired CT image also well represented the internal structure of the phantom, and the estimated mean linear attenuation coefficient value (μ= 0.0789 cm−1) of the phantom was close to the true value (μ= 0.0752 cm−1). In addition, the hotspot activity estimated by combining the information of the Compton image and CT image was 8.06 μCi. Hence, it was found that the Compton CT system provides essential information for radioactive waste drums.