A series of ZIF-67-C-IL catalysts were prepared using ZIF-67 and 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([ BMIM]NTf2) ionic liquid as precursors. The structure of the catalysts was characterized by XRD, TEM, SEM and XPS. The catalytic performance of the catalysts for the oxygen reduction reaction (ORR) was evaluated in a three-electrode system. The results confirmed that the high-temperature treatment of the precursors resulted in the formation of N, S codoped carbon-encapsulated Co9S8 nanoparticles. To create N, S co-doped carbon coated Co9S8 nanoparticle catalysts, ionic liquids are used as sulfur and nitrogen sources. The catalytic activity of ORR can be improved using N, S co-doped carbon to prevent the aggregation of Co9S8 nanoparticles. Graphitized and N, S co-doped carbon shells are optimal for achieving high activity stability. Optimal 600-ZIF-67-C(1:1.5)-30IL catalytic activity was observed for ORR. The half-wave potential of ORR was 0.88 V vs. RHE in 0.1 mol L− 1 KOH, with a limit current density of 4.70 mA cm− 2. Similar ORR electrocatalytic activity was observed between this catalyst and commercial Pt/C (20 wt%).
Ammonia is a potential fuel for producing and storing hydrogen, but its usage is constrained by the high cost of the noble metal catalysts to decompose NH3. Utilizing non-precious catalysts to decompose ammonia increases its potential for hydrogen production. In this study, carborundum (SiC)-supported cobalt catalysts were prepared by impregnating Co3O4 nanoparticles (NPs) on SiC support. The catalysts were characterized by high-resolution transmission electron microscope, X-ray photoelectron spectroscopy, temperature programmed reduction, etc. The results show that the large specific surface area of SiC can introduce highly distributed Co3O4 NPs onto the surface. The amount of Co in the catalysts has a significant effect on the catalyst structure, particle size and catalytic performances. Due to the interaction of cobalt species with SiC, the 25Co/SiC catalyst provided the optimal ammonia conversion of 73.2% with a space velocity of 30,000 mL gcat −1 h− 1 at 550 °C, corresponding to the hydrogen production rate of 24.6 mmol H2 gcat −1 min− 1. This research presents an opportunity to develop highly active and cost-effective catalysts for hydrogen production via NH3 decomposition.