검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2024.11 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Coal tar pitch is a raw material that can be made from various carbon materials such as activated carbon, carbon fiber, and artificial graphite through heat treatment. In particular, it is an important raw material used as a binder and impregnated pitch when manufacturing carbon composite materials. In order to improve the physical properties of such a carbon composite material, the content of β-resin is an important factor. Although β-resin plays the role of a binder, it also corresponds to fixed carbon, so it can determine the physical properties after carbonization. In this study, we compared the physical properties of coal tar pitch various temperature ramping rate, and found through Py-GC/MS analysis that intermediate materials were generated by heteroatoms such as oxygen and nitrogen. MALDI-TOF/MS analysis revealed that these intermediate materials overlapped with the molecular weight region of β-resin. Therefore, the content of β-resin is in the following order: 430–5 (12.8 wt%), 430–10 (10.2 wt%), and 430–2 (6.3 wt%), and when 430–5 is used as a binder, the highest density appeared at 1.75 g/cm3. However, such intermediate materials undergo thermal decomposition even at temperatures above 900 °C. As a result, after carbonization, 430–5 had a density of 1.60 g/cm3, which was similar or lower than that of 430–2 (1.72 → 1.63 g/ cm3) and 430–10 (1.73 → 1.61 g/cm3). From these results, it is expected that if the heteroatom content is distributed in an appropriate amount and the heating rate is well controlled, it will be possible to maintain a high density even after carbonization while ensuring a high beta-resin content.
        4,000원
        2.
        2019.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This research proposes an optimal flushing operation technique in an effort to prevent secondary water pollutions and accidents in aged pipes, and to improve the cleaning effect of unidirectional flushing. Water flow directions were analyzed using EPANET 2.0, while flushing and air scouring experiments in forward and reverse directions were performed in the field. In 42 experiments, average residual chlorine concentration and turbidity were improved after cleaning compared to before cleaning. It was found that even when the same cleaning method was used, further improvement of cleaning effect was possible by applying air injection and reverse direction cleaning techniques. By means of one-way ANOVA(Analysis of variance), it was also possible to statistically verify the need of actively utilizing air injection and reverse direction cleaning. Based on correlation between turbidity and TSS, the total amount of suspended solids removal was estimated for 874 flushing operations and 194 air scouring operations. The result showed that air scouring used more discharge water than flushing by an average of 4.9 m3 yet with larger amounts of suspended solids removal by an average of 145.9 g. The result of analysis on turbidity values from 887 flushing operations showed low cleaning effect of unidirectional flushing for the pipes with diameters over 300 mm. In addition, the turbidity values measured during cleaning showed an increasing tendency as pipe age increased. The methodology and results of this research are expected to contribute to the efficient maintenance and improvement of water quality in water distribution networks. Follow-up research involving the measurement of water quality at regular time intervals during cleaning would allow a more accurate comparison of discharge water quality characteristics and cleaning effects between different cleaning methods. To this end, it is considered necessary to develop a standardized manual that can be used in the field and to provide relevant trainings.
        4,600원