검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 106

        101.
        2010.09 서비스 종료(열람 제한)
        Controllable transgenic expression systems in transgenic animal model are valuable to the development of therapeutic approaches in human medical fields. The aim of this study was to 1) produce a transgenic cloned dog using inducible tetracycline vector system, and 2) investigate whether the transgenic cloned dog could be induced the transgene expression using doxycycline (Doxy). Canine fetal fibroblasts were infected with retroviral vectors designed to express the enhanced green fluorescent protein (eGFP) gene under the control of tetracycline-inducible promoter. For somatic cell nuclear transfer (SCNT), nucleus of an in vivo matured oocyte was removed and an eGFP expressed cell cultured with 1 ㎍/㎖ of Doxy was injected. After electrical fusion and chemical activation, the reconstructed embryos were transferred to a recipient and pregnancy diagnosis was performed by ultrasonography. Experiment I evaluated the mean fluorescence intensity (MFI) of infected cells while the cells were cultured in the presence of 1 ㎍/㎖ of Doxy for 5 days, and then in the absence of Doxy for 7 days using fluorescence-activated cell sorter. Experiment II was designed to produce an eGFP controllable transgenic cloned dog via SCNT. For verification of transgenic dog, experiment III was performed Southern Blot analysis and observation in vivo regulation of eGFP expression in the cloned dog treated with 100 ㎎/㎏ of Doxy every 2 days for 2 weeks under ultraviolet light. In experiment IV, western blot was used to detect eGFP increase and decrease in skin tissues of transgenic dog under the presence or absence of Doxy. In the results of experiment I, the MFI for infected cells was rapidly increased to approximately 42.3 times after 3 day-treatment compared to pre-treatment and quickly decreased 3 days after ceasing the treatment. In experiment II, a total of 203 embryos were transferred to nine recipients and three pregnant delivered three pups (Tet-on eGFP 0, Tet-on eGFP 1, and Tet-on eGFP 2) by C-sec and Tet-on eGFP 2 among them is still alive. All cloned pups were genetically identical to the donor cell. Tet-on eGFP 2 showed an apparent in vivo eGFP expression on her body after Doxy administration in experiment III. The result of Sothern blotting showed that the transgene insertion was detected from the three cloned dogs and all organs of Tet-on eGFP 1. Experiment IV indicated that a robust eGFP expression in skin tissue of Tet-on eGFP 2 rapidly increased after Doxy treatment and gradually decreased to basal level on 9 weeks after ceasing the treatment. In conclusion, we report here for the first time an inducible transgenic system in canine species and it can stably induce the transgene expression at intended time. This study has demonstrated the capacity to generate transgenic model dog which could regulate the transgene and it would contribute to human medical research fields.
        102.
        2009.03 KCI 등재 서비스 종료(열람 제한)
        "Early Valley", is an early maturing potato cultivar with high yield potential. "Early Valley" is a clonal selection resulting from the cross between 'Suncrisp' and 'A87109-10'. It has medium plant height and light green foliage. "Early Valley" has medium flowering habit and white flowers. Tubers are smooth, yellow skin, light yellow flesh, round tuber shape, medium eye depth, and medium dormancy and good keeping quality. It has stable yield under wide range of climatic conditions. "Early Valley" is resistance to late blight, but moderately susceptible to common scab and hollow heart. This cultivar is also resistant to potato rotting at harvesting during the raining season. "Early Valley" has high level of antioxidant activity (about three times higher) and vitamin C (higher by 40%) than the 'Superior'. This cultivar has high level of tuber uniformity and capable of yielding 36.56 t/ha which is 17.07% higher than the control potato cultivar 'Superior' under optimum agronomical practices.
        103.
        2003.09 서비스 종료(열람 제한)
        DNA methylation is involved in epigenetic processes such as X-chromosome inactivation, imprinting and silencing of transposons. DNA methylation is a highly plastic and critical component of mammalian development The DNA methyltransferases (Dnmts) are responsible for the generation of genomic methylation patterns, which lead to transcriptional silencing. The maintenance DNA methyltransferase enzyme, Dnmt 1, and the de novo methyltransferase, Dnmt3a and Dnmt3b, are indispensable for development because mice homozygous for the targeted disruption of any of these genes are not viable. The occurrence of DNA methylation is not random, and it can result in gene silencing The mechanisms underlying these processes are poorly understood. It is well established that DNA methylation and histone deacetylation operate along a common mechanistic pathway to repress transcription through the action of methyl-binding domain proteins (MBDs), which are components of, or recruit, histone deacetylase (HDAC) complexes to methylated DNA. As a basis for future studies on the role of the DNA-methyl-transferase in porcine development, we have isolated and characterized a partial cDNA coding for the porcine Dnmt1. Total RNA of testis, lung and ovary was isolated with TRlzol according to the manufacture's specifications. 5 ug of total RNA was reverse transcribed with Super Script II in the presence of porcine Dnmt 1 specific primers. Standard PCRs were performed in a total volume of 50 ul with cDNA as template. Two DNA fragmenets in different position were produced about 700bp, 1500bp and were cloned into pCR II-TOPO according to the manufacture's specification. Assembly of all sequences resulted in a cDNA from 158bp of 5'to 4861bp of 3'compare with the known human maintenance methyltransferase. Now, we are cloning the unknown Dnmt 1 region by 5'-RACE method and expression of Dnmt 1 in tissues from adult porcine animals.
        106.
        1984.04 KCI 등재 서비스 종료(열람 제한)
        인삼종자의 내과지는 배생장을 현저히 억제시켰다. 이 억제작용은 내과지에 의한 수분흡수 때문이 아니라 기계적인 것으로 추측되어졌다. 수산화나트리움 2.5% 용액에 인참종자를 10분 내지 30분 침적시키므로써 배생장을 촉진시킬 수 있었으나 황산처리는 인삼종자의 배생장에 영향을 주지 못했다.
        6