검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2023.05 구독 인증기관·개인회원 무료
        To prove the long-term safety of deep geological repository, the safety assessment is needed to ensure that the expected performance of repository satisfies the regulatory standards. Scenario development is process of analyzing events and evolutions that can directly or indirectly affect the performance of a disposal system and is a pre-step for quantitative safety assessment. Scenarios are used to identify and define cases to be assessed by numerical modeling, and cases are mainly divided into normal (also called the ‘reference’ and ‘expected evolution’) and abnormal scenarios. Mainly two approaches have been used to set up scenarios. One is a bottom-up approach that starts with features, events and processes (FEPs). This approach can analyze the evolution and events related to the performance of the disposal system in an inductive manner. The other is top-down approach that analyzes the events and evolution of disposal system, focusing on situations that may affect the safety function of the components. This approach starts with a set of intuitively predefined expected failures of safety function. Combining the two approaches is more effective in demonstrating comprehensiveness which is a main challenge of scenario analysis, and almost national radioactive waste management institutions combine top-down and bottom-up approaches for development of scenarios. An approach combining the two approaches is called a hybrid approach, and the detailed method differs from each institution and has not been determined. In this study, some work for constructing the scenario using hybrid approach was performed. Firstly, defining each component’s safety function and screening FEPs according to several rules were performed for a generic repository. Secondly, we extracted performance factors that are considered likely to affect safety functions. And lastly, we integrated FEPs correlated with performance factor to simplify the analysis. These results will be material to construct the scenario using hybrid approach.
        2.
        2023.05 구독 인증기관·개인회원 무료
        To obtain a license for a deep geological disposal repository for spent nuclear fuel, it is necessary to perform a safety assessment that quantifies the radiological impact on the environment and humans. One of the key steps in the safety assessment of a deep geological repository is the development of scenarios that describe how the repository evolves over the performance period and how events and processes affect performance. In the field of scenario development, demonstrating comprehensiveness is critical, which describes whether all factors that are expected to have a significant impact on the repository's performance have been considered. Mathematical proof of this is impossible. However, If the scenario development process is logical and systematic, it can support the claim that the scenario is comprehensive. Three primary approaches are being considered for scenario development: ‘Bottomup’, ‘Top-down’, and ‘Hybrid’. Hybrid approach provides a more systematic and structured process by considering both the FEPs (Features, Events, Processes) and safety functions utilized in the bottomup and top-down approaches. Many countries that develop recent scenarios prefer demonstrating scenario comprehensiveness using a hybrid approach. In this study, a systematic and structured scenario development process of a hybrid approach was formulated. Based on this, sub-scenarios were extracted that describe the phenomena occurring in the repository over the performance period, categorized by period. By integrating and screening the extracted sub-scenarios, a scenario describing the phenomena occurring over the entire period of disposal was developed.
        3.
        2022.10 구독 인증기관·개인회원 무료
        Many countries have been developing their own FEP (Feature, Event, Process) lists to formulate radionuclide release scenarios in deep disposal repository of spent nuclear fuels and to assess the safety. The main issue in developing a FEP list is to ensure its completeness and comprehensiveness in examining all plausible scenarios of radionuclide release in a repository of interest. To this end, the NEA International FEP (IFEP) list as a generic reference have been developed and updated through long-term international collaborations. Leading countries advanced in the research field of deep geologic disposal of spent nuclear fuels have comparatively mapped their project-specific FEP (PFEP) lists with the IFEP list. Recently in 2019, NEA has published an updated version of IFEP list (ver. 3.0) which has a different classification system: the IFEP version 3.0 has the five main categories including the waste package, repository, geosphere, biosphere and external factors while the previous IFEP versions were mainly classified into the external, environmental, and contaminant factors. Most leading countries in this field, Finland and Sweden, recently succeeded to obtain the design and/or construction licenses for deep geologic disposal of spent nuclear fuel. Therefore, their PFEP lists should be good benchmark cases to the following countries. However, their PFEP lists have not comparatively mapped with the most recent version of IFEP and thus some gaps may exist in showing completeness and comprehensiveness in comparison to the IFEP version 3.0. In this study, we comparatively map the PFEP lists of Finland and Sweden to the IFEP version 3.0. The comparatively mapped PFEP list could be used as the basis for verifying the comprehensiveness and completeness of the domestic PFEP list currently under development in Korea.
        4.
        2022.10 구독 인증기관·개인회원 무료
        Safety assessment is important for the radioactive waste repositories, and several methods are used to develop scenarios for the management of radioactive waste. The intent of the use of these scenarios is to show how the radio nuclides release can affect the safety of disposal system. It plays an essential role of providing scientific and technical information for performance assessment of safety functions. As important as scenario is, numerous studies for their own scenario development have been conducted in many countries. Scenario development methodology is basically divided into four categories: (1) judgmental, (2) fault/event-tree analysis, (3) simulation, and (4) systematic. Under numerous research, these methods have been developed in ways to strengthen the advantages and make up for the weakness. However, it was hard to find any judgmental or fault/event-tree analysis approach in recent safety assessments since they are not well-systemized and difficult to cover all scenarios. Simulation and systematic approaches are used broadly for their convenience of analyzing needed scenarios. Furthermore, several new methodologies, Process Influence Diagram (PID)/Rock Engineering System (RES)/Hybrid, were developed to reinforce the systematic approach in recent studies. Currently, a government project related to the disposal of spent nuclear fuel is in progress in Korea, and the scenario development for safety case is one of the important tasks. Therefore, it is necessary to identify the characteristics and strengths and weaknesses of the latest scenario development and analysis methods to create a unique methodology for Korea. In this paper, the existing methodologies and cases will be introduced, and the considerations for future scenario development will be summarized by considering those used in the nuclear field other than repository issues. Systematic approach, which is the mostly commonly used method, will be introduced in detail with its use in other countries at the subsequent companion paper entitled ‘Case Study for a Disposal Facility for the Spent Nuclear Fuel’.
        5.
        2022.10 구독 인증기관·개인회원 무료
        In Korea, research on the development of safety case, including the safety assessment of disposal facility for the spent nuclear fuel, is being conducted for long-term management planning. The safety assessment procedure on disposal facility for the spent nuclear fuel heavily involves creating scenarios in which radioactive materials from the repository reach the human biosphere by combining Features, Events and Processes (FEP) that describe processes or events occurring around the disposal area. Meanwhile, the general guidelines provided by the IAEA or top-tier regulatory requirements addressed by each country do not mention detailed methods of ‘how to develop scenarios by combining individual FEPs’. For this reason, the overall frameworks of developing scenarios are almost similar, but their details are quite different depending on situation. Therefore, in order to follow up and clearly analyze the methods of how to develop scenarios, it is necessary to understand and compare case studies performed by each institution. In the previous companion paper entitled ‘Research Status and Trends’, the characteristics and advantages/disadvantages of representative scenario development methods were described. In this paper, which is a next series of the companion papers, we investigate and review with a focus on details of scenario development methods officially documented. In particular, we summarize some cases for the most commonly utilized methods, which are categorized as the ‘systematic method’, and this method is addressed by Process Influence Diagram (PID) and Rock Engineering System (RES). The lessons-learned and insight of these approaches can be used to develop the scenarios for enhanced Korean disposal facility for the spent nuclear fuel in the future.
        6.
        2022.05 구독 인증기관·개인회원 무료
        Comprehensive identification and systematic classification of all features, events and processes (FEP) that influence on the performance of a high-level radioactive waste disposal system is essential for safety assessment. Nuclear energy agency (NEA) has been developing and updating the standardized generic FEP list, so-called NEA international FEP list, which may be used as the basis to develop project-specific FEP lists to reflect diverse system and site characteristics in different countries. On the basis, Finland and Sweden have recently got licenses to construct spent nuclear fuel deep disposal facilities. Also in Korea, timely construction of a high-level radioactive waste disposal facility is an urgent issue for stable operation of nuclear power plants. For this end, a FEP list that properly considers for system and site characteristics of Korean high-level radioactive waste disposal facility needs to be developed. In this study, the most recent NEA international FEP list published in 2019 was comprehensively reviewed with focus on the structure of the classification system and the physicochemical mechanisms associated with the key elements. The obtained results will be used for the comparative analysis of domestic and oversea project-specific FEP lists and for the development of a generic FEP list relevant to Korean high-level radioactive waste disposal system.