검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 8

        1.
        2023.11 구독 인증기관·개인회원 무료
        If radioactive plumes are released outside due to loss of containment building integrity during a nuclear power plant accident, these materials might travel with the wind, affecting both the surrounding environment and neighboring countries. In China, most nuclear power plants are located on the eastern coast. Consequently, a radioactive plume generated during an accident could negatively impact even the western part of the Korean Peninsula due to westerly winds. To detect such problems early, respond quickly, and protect residents, a system that can monitor aerial radiation under normal conditions is needed. Additionally, a detection system that can operate in real-time in an emergencies conditions is required. The current method for aerial radiation measurement takes environmental radiation data from a monitoring post 1.5 m above the ground and converts it to altitude. To measure actual aerial radiation, an expansive area is surveyed by aircraft. However, this approach is both time-consuming and expensive. Thus, to monitor radioactive plumes influenced by environmental factors like wind, we need a radiation detector that can gauge both radioactivity and directionality. In this study, we developed a radiation detector capable of assessing both the radioactivity and directionality of a radioactive plume and conducted its performance evaluation. We miniaturized the radiation detector using a CZT (Cadmium Zinc Telluride) sensor, enabling its mounting on unmanned aerial vehicles like drones. It is configured with multi-channels to measure directionality of a radioactive plumes. For performance evaluation, we positioned two-channel CZT sensors at 90 degrees and measured the energy spectrum for angle and distance using a disk-type radioactive isotope. Using this method, we compared and analyzed the directionality performance of the multi-channel radiation detector. We also confirmed its capability to discern specific radioactivity information and nuclide types in actual radioactive plumes. Our future research direction involves mounting the multi-channel radiation detector on a drone. We aim to gather actual aerial radiation data from sensors positioned in various directions.
        2.
        2023.05 구독 인증기관·개인회원 무료
        During the decommissioning of a nuclear power plant, the structures must be dismantled to a disposal size. Thermal cutting methods are used to reduce metal structures to a disposal size. When metal is cut using thermal cutting methods, aerosols of 1 μm or less are generated. To protect workers from aerosols in the work environment during cutting, it is necessary to understand the characteristics of the aerosols generated during the cutting process. In this study, changes in aerosol characteristics in the working environment were observed during metal thermal cutting. The cutting was done using the plasma arc cutting method. To simulate the aerosols generated during metal cutting in the decommissioning of a nuclear power plant, a non-radioactive stainless steel plate with a thickness of 20 mm was cut. The cutting condition was set to plasma current: 80 A cutting speed: 100 mm/min. The aerosols generated during cutting were measured using a highresolution aerosol measurement device called HR-ELPI+ (Dekati®). The HR-ELPI+ is an instrument that can measure the range of aerodynamic diameter from 0.006 μm to 10 μm divided into 500 channels. Using the HR-ELPI+, the number concentration of aerosols generated during the cutting process was measured in real-time. We measured the aerosols generated during cutting at regular intervals from the beginning of cutting. The analyzed aerosol concentration increased almost 10 times, from 5.22×106 [1/cm3] at the start of cutting to 6.03×107 [1/cm3] at the end. To investigate the characteristics of the distribution, we calculated the Count Median Aerodynamic Diameter (CMAD), which showed that the overall diameter of the aerosol increased from 0.0848 μm at the start of cutting to 0.1247 μm at the end of the cutting. The calculation results were compared with the concentration by diameter over time. During the cutting process, particles with a diameter of 0.06 μm or smaller were continuously measured. In comparison, particles with a diameter of 0.2 μm or larger were found to increase in concentration after a certain time following the start of cutting. In addition, when the aerosol was measured after the cutting process had ended, particles with a diameter of 0.06 μm or less, which were measured during cutting, were hardly detected. These results show that the nucleation-sized aerosols are generated during the cutting process, which can explain the measurement of small particles at the beginning of cutting. In addition, it can be speculated that the generated aerosols undergo a process of growth by contact with the atmosphere. This study presents the results of real-time aerosol analysis during the plasma arc cutting of stainless steel. This study shows the generation of nucleation-sized particles at the beginning of the cutting process and the subsequent increase in the aerosol particle size over time at the worksite. The analysis results can characterize the size of aerosol particles that workers may inhale during the dismantling of nuclear power plants.
        3.
        2022.10 구독 인증기관·개인회원 무료
        Investigations and monitoring of environmental radiation are important for preventing expected accidents or for early detection of unexpected accidents, in nuclear facilities and the surrounding. In the event of an environmental radiation accident, it should be possible to identify and analyze the radiation-contaminated area. Therefore, a rapid radiation monitoring system is required for immediate response and necessary measures. In this study, the distribution of radiation mapping is performed on a contaminated area using 2-dimensional or 3-dimensional contour mapping techniques. The entire surrounding area can be understood at a glance by displaying the radiation contour line on the map of the measured area.
        4.
        2022.10 구독 인증기관·개인회원 무료
        When decommissioning a nuclear power plant, the structure must be made to a disposable size. In general, the cutting process is essential when dismantling a nuclear power plant. Mainly, thermal cutting method is used to cutting metal structures. The aerosols generated during thermal cutting have a size distribution of less than 1 μm. The contaminated structures are able to generate radioactive aerosols in the decommissioning. Radioactive aerosols of 1 μm or less are deposited in the respiratory tract by workers’ breathing, causing the possibility of internal exposure. Therefore, workers must be protected from the risk of exposure to radioactive aerosols. Prior knowledge of aerosols generated during metal cutting is important to ensure worker safety. In this study, the physical and chemical properties of the aerosol were evaluated by measuring the number and mass concentrations of aerosols generated when cutting SUS304 and SA508 using the laser cutting method. High-resolution aerosol measuring equipment (HR-ELPI+, DEKATI) was used to measure the concentration of aerosols. The HR-ELPI+ is an impactor-type aerosol measuring equipment that measures the aerosol number concentration distribution in the aerodynamic diameter range of 6 nm to 10 um in real-time. And analyze the mass concentration of the aerosol according to the diameter range through the impactor. ICP-MS was used for elemental mass concentration analysis in the aerosol. Analytical elements were Fe, Cr, Ni and Mn. For the evaluation of physical and chemical properties, the MMAD of each element and CMAD were calculated in the aerosol distribution. Under the same cutting conditions, it was confirmed that the number concentration of aerosols generated from both materials had a uni-modal distribution with a peak around 0.1 um. CMAD was calculated to be 0.072 um for both SUS304 and SA508. The trend of the CMAD calculation results is the same even when the cutting conditions are changed. In the case of MMAD, it was confirmed that SUS304 had an MMAD of around 0.1 μm in size for only Fe, Cr and Mn. And SA508, Fe, Cr, Ni and Mn were all confirmed to have MMAD around 0.1 μm in size. The results of this study show that a lot of aerosols in the range of less than 1 μm, especially around 0.1 μm in size, are generated when metal is cut using laser cutting. Therefore, in order to protect the internal exposure of workers to laser metal cutting when decommissioning NPPs, it is necessary to protect from nano-sized aerosols beyond micron size.