검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        1.
        2012.03 구독 인증기관 무료, 개인회원 유료
        Differential capacity of the parthenogenetic embryonic stem cells (PESCs) is still under controversy and the mechanisms of its neural induction are yet poorly understood. Here we demonstrated neural lineage induction of PESCs by addition of insulin-like growth factor-2 (Igf2), which is an important factor for embryo organ development and a paternally expressed imprinting gene. Murine PESCs were aggregated to embryoid bodies (EBs) by suspension culture under the leukemia inhibitory factor-free condition for 4 days. To test the effect of exogenous Igf2, 30 ng/ml of Igf2 was supplemented to EBs induction medium. Then neural induction was carried out with serum-free medium containing insulin, transferrin, selenium, and fibronectin complex (ITSFn) for 12 days. Normal murine embryonic stem cells derived from fertilized embryos (ESCs) were used as the control group. Neural potential of differentiated PESCs and ESCs were analyzed by immunofluorescent labeling and real-time PCR assay (Nestin, neural progenitor marker; Tuj1, neuronal cell marker; GFAP, glial cell marker). The differentiated cells from both ESC and PESC showed heterogeneous population of Nestin, Tuj1, and GFAP positive cells. In terms of the level of gene expression, PESC showed 4 times higher level of GFAP expression than ESCs. After exposure to Igf2, the expression level of GFAP decreased both in derivatives of PESCs and ESCs. Interestingly, the expression level of Tuj1 increased only in ESCs, not in PESCs. The results show that IGF2 is a positive effector for suppressing over-expressed glial differentiation during neural induction of PESCs and for promoting neuronal differentiation of ESCs, while exogenous Igf2 could not accelerate the neuronal differentiation of PESCs. Although exogenous Igf2 promotes neuronal differentiation of normal ESCs, expression of endogenous Igf2 may be critical for initiating neuronal differentiation of pluripotent stem cells. The findings may contribute to understanding of the relationship between imprinting mechanism and neural differentiation and its application to neural tissue repair in the future.
        4,000원
        8.
        2008.09 구독 인증기관 무료, 개인회원 유료
        Embryonic stem cells have a pluripotency and a potential to differentiate to all type of cells. In our previous study, we have shown that embryonic stem cells (ESCs) lines can be generated from murine parthenogenetic embryos. This parthenogenetic ESCs line can be a useful stem cell source for tissue repair and regeneration. The defect in full-term development of parthenogenetic ESCs line enables researchers to avoid the ethical concerns related with ESCs research. In this study, we presented the results demonstrating that parthenogenetic ESCs can be induced into osteogenic cells by supplementing culture media with ascorbic acid and β-glycerophosphate. These cells showed morphologies of osteogenic cells and it was proven by Von Kossa staining and Alizarin Red staining. Expression of marker genes for osteogenic cells (osteopontin, osteonectin, alkaline phosphatase, osteocalcin, bone-sialoprotein, collagen type1, and Cbfa1) also confirmed osteogenic potential of these cells. These results demonstrate that osteogenic cells can be generated from parthenogenetic ESCs in vitro.
        4,000원
        11.
        2007.09 구독 인증기관 무료, 개인회원 유료
        Somatic cells nuclear transfer (SCNT) is a useful tool in studies of developmental biology and animal cloning. However, SCNT experiments only are allowed to skilled technical experts. In this experiment, laser-assisted zona pellucida piercing tool (LASER) was applied in murine SCNT. LASER minimized the use of piezo-driven micromanipulator (PIEZO), reducing chances of problems caused by PIEZO pulses. LASER reduced time that took to pierce zona pellucida in removal of nucleus from oocyte and somatic cell injection, which might have taken longer time with PIEZO. Time and difficulties that took researcher of equivalent skilled for their experiments were decreased with LASER, and this might affect the improvement of embryonic development. (LASER, 6.2% versus PIEZO, 2.9%; P<0.05). Thus, these data support that the use of LASER can be used for zona pellucida piercing in murine SCNT program as an alternative to PIEZO.
        3,000원